
1

eID Applet Developer's Guide
Integrating the eID Applet within your web applications.

Version 1.2.0.Beta1

Frank Cornelis

18 February 2014

Copyright © 2008-2013 Fedict

Abstract

This developer's guide serves as an entry point for integrating the eID Applet

in your web applications. The target audience is web developers and web

application architects.

1. Introduction ... 1

1.1. Mac OS X .. 3

1.2. Linux .. 3

2. eID Applet ... 3

3. eID Applet Service .. 6

3.1. eID Identification ... 8

3.2. eID Authentication ... 16

3.3. eID Signatures .. 21

3.4. eID Administration ... 23

3.5. Generic eID Applet Service settings ... 24

4. Maven Integration .. 28

5. eID Applet Web Application Deployment ... 31

5.1. AJP proxy .. 31

5.2. Reverse proxy .. 32

5.3. Tomcat 7 .. 33

6. Accessibility ... 33

6.1. Java Accessibility Bridge ... 33

6.2. Screen Reader Support ... 34

7. eID Applet Protocol ... 34

7.1. eID Applet Protocol Messages ... 35

A. eID Applet Developer's Guide License .. 45

B. eID Applet License .. 46

C. Revision history .. 46

1. Introduction

The eID Applet is a browser component that exposes the functionality of an eID card to your web

applications. In Figure 1, “eID Applet Screenshot” you find a screen shot of the eID Applet.

eID Applet Developer's Guide

2

Figure 1. eID Applet Screenshot

The main features of the eID Applet are:

• Easy to integrate within an existing web application.

• Security and privacy of the citizen is protected.

• Interactive eID card handling.

• Support of CCID secure pinpad readers.

The eID Applet uses Java applet technology. This minimized the client web browser requirements.

eID Applet Source Code

The eID Applet source code is available at eID Applet Google Code [http://

code.google.com/p/eid-applet/] .

eID Applet Source Code Branching

While some might feel very tempted to branch the eID Applet, given the open

source nature of this project, (for example for branding reasons) one needs to take

all aspects of branching into consideration. If you branch you will lose all official

bug fixes unless you back-port them manually which can be quite time consuming.

eID Applet License

The eID Applet has been released under the GNU LGPL 3.0 open source software

license. This implies that, in case you alter the eID Applet, you have to make the

eID Applet source code available yourself.

eID Applet Support

Best-effort support on the eID Applet is provided via the eID Applet Google Group

[http://groups.google.com/group/eid-applet] mailing list. Feel free to join in.

http://code.google.com/p/eid-applet/
http://code.google.com/p/eid-applet/
http://code.google.com/p/eid-applet/
http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet

Mac OS X

3

1.1. Mac OS X

Because Apple only supports the Java 6 runtime on their Mac OS X operating systems since

Snow Leopard, the identification functionality will not work for Mac OS X 10.4 and 10.5.

The strategy is to no longer support operating systems, but to support a specific Java platform.

For the eID Applet this is the Java 6 platform. We can only give advice on how to configure Java

6 on your operatings system.

1.2. Linux

1.2.1. Fedora 9, 10, 11, 12

The Fedora operating system comes by default with the IcedTea JRE which is based on the

OpenJDK. If the Firefox browser uses this JRE the eID Applet still has some difficulties to run.

Please download the official Sun Java 6 JRE and enable it in the Firefox browser. The Firefox

plugins can be configured via symbolic links under: /usr/lib/mozilla/plugins . Remove the

IcedTea JRE link via: rm /usr/lib/mozilla/plugins/libjavaplugin.so . Afterwards add

a symbolic link to the Sun JRE plugin, which can be found under: $JAVA_HOME/jre/plugin/

i386/ns7/libjavaplugin_oji.so . Check the installed plugins in Firefox by navigating to:

about:plugins .

1.2.2. Ubuntu 9.04, 9.10

Under Linux Ubuntu you can install the Sun JRE 1.6 via the following command: sudo apt-get

install sun-java6-jdk sun-java6-plugin

1.2.3. Linux: Firefox 3.6 and Chrome

The web browsers Firefox 3.6 and Google Chrome use the next generation Java plugin

(libnpjp2.so). So for Firefox you can configure the Java plugin as follows: sudo ln -s

$JAVA_HOME/jre/lib/i386/libnpjp2.so /usr/lib/mozilla/plugins/

1.2.4. SELinux

Under Fedora Linux you might trigger an SELinux error when the browser tries to run the JRE

plugin. The following command prevents the SELinux error: sudo chcon -t $JAVA_HOME/jre/

lib/i386/client/libjvm.so

2. eID Applet

The eID Applet should be used within a web page as shown in the following example:

<script src="https://www.java.com/js/deployJava.js"></script>

<script>

 var attributes = {

 code :'be.fedict.eid.applet.Applet.class',

 archive :'eid-applet-package.jar',

eID Applet Developer's Guide

4

 width :400,

 height :300

 };

 var parameters = {

 TargetPage :'identity-result.jsp',

 AppletService : 'applet-service',

 BackgroundColor : '#ffffff'

 };

 var version = '1.6';

 deployJava.runApplet(attributes, parameters, version);

</script>

Notice that we are using the Deployment Toolkit to load the eID Applet. This avoids browser

compatibility issues and features an automatic installation of the required Java browser plugin.

The web application in which the eID Applet is embedded should use SSL for securing the

communication between the web browser and the web application server. The eID Applet will not

proceed when it detects a non SSL browser session.

The eID Applet will also not proceed when it detects that it has insufficient privileges to do so.

This implies that the eID Applet JAR has to be signed and trusted by the citizen. The eID Applet

that ships with an officially released eID Applet SDK has been signed by Fedict. In case of a

security breach with the eID Applet, Fedict can revoke the corresponding code signing certificate

to guarantee maximal safety of the citizen.

Google Chrome

For Google Chrome to be able to load the eID Applet using the Deployment Toolkit

Javascript you should host the deployJava.js Javascript locally.

eID Applet JavaScript

The eID Applet SDK contains an eid-applet-js artifact that offers a default

JavaScript to load the eID Applet.

The available eID Applet parameters are summarized in Table 1, “eID Applet Parameters” .

Table 1. eID Applet Parameters

Parameter Required Description

TargetPage required Indicates the page to which the eID Applet

navigates after performing the requested eID

operation. For example: result.jsp

eID Applet

5

Parameter Required Description

AppletService required Points to the eID Applet Service server-side

component that will handle the communication

between the eID Applet and the (servlet) web

application container. For example: applet-

service

CancelPage optional Indicates the page to which the eID Applet

navigates after the user cancelled the eID

operation. For example: cancel.jsp

BackgroundColor optional The background color that is used by the eID

Applet user interface. The default background

color is white. For example: #ffffff

ForegroundColor optional The foreground color that is used by the eID

Applet user interface. The default foreground

color is black. For example: #000000

Language optional The language that is used by the eID Applet

user interface for internationalization of the

status messages. If it is not provided, the

eID Applet defaults to the JRE runtime locale

settings. For example: nl

MessageCallback optional Via this parameter a web developer can

configure a Javascript callback. This callback

function will be invoked everytime the

eID Applet displays an info message.

The function signature looks like: function

messageCallback(status, message)

MessageCallbackEx optional Via this parameter a web developer

can configure a Javascript callback. This

callback function will be invoked every

time the eID Applet displays an info

message. The function signature looks

like: function messageCallback(status,

messageId, message)

UserAgent optional Via this parameter you can let the eID Applet

to use the given User-Agent HTTP header.

Some servers might require that the User-

Agent reported by the eID Applet is the same

as the one reported by the web browser to be

able to use the same HTTP session context.

Example value: navigator.userAgent

HideDetailsButton optional When this parameter is set to true the

eID Applet will hide the details button. To

eID Applet Developer's Guide

6

Parameter Required Description

compensate for this, the eID Applet will use

the Java Console to output detailed logging.

Please note that the Java Console is not

enabled per default on every platform. The

Java Console can be enabled via the jcontrol

JVM tool.

NoChunkedTransferEncoding optional When this parameter is set to true the eID

Applet will not used chunked transfer-encoding

when communicating with the eID Applet

Service component.

Third-party cookies

Recent browsers might disable third-party cookies by default. As the Java

web browser plugin is a third-party component, it's possible that the session

cookie is no longer communicated to the Java runtime. A work-around for

JSF is given by appending the following to the AppletService parameter:

;jsessionid=#{facesContext.externalContext.getSession(false).id}

Javascript

The eID Applet cannot be accessed from Javascript for cross-site scripting security

reasons.

Javascript TargetPage

The TargetPage applet parameter can also be used to execute a

Javascript when the eID operation is finished. Example: TargetPage:

'javascript:alert("Hello World");'

3. eID Applet Service

The eID Applet requires a server-side service component to communicate the identity or

authentication data from the web browser to the server using a secure channel. We call this

component the eID Applet Service. The eID Applet SDK comes with eID Applet Service servlet

components to ease integration of the eID Applet within servlet container Java EE based web

applications. The eID Applet Service components require at least a servlet version 2.4 container

and a JRE version 1.6. The eID Applet and eID Applet Service architecture has been depicted in

Figure 2, “eID Applet Architecture” .

eID Applet Service

7

Figure 2. eID Applet Architecture

During the first step (1) the web browser loads the web page containing a reference to the eID

Applet. The web browser continues by loading the eID Applet via the JRE web browser plugin.

After the eID Applet has been loaded, it initiates a protocol run (2) with the server-side eID Applet

Service. For some eID operations the web developer is required to configure service provider

components. These service provider components are invoked (3) by the eID Applet Service during

a protocol run. At the end of a protocol run (4) the eID Applet Service pushes some attributes

into the HTTP session context of the web application container. Finally (5) the eID Applet makes

the web browser to navigate to the target page. The target page can now access the eID identity

items (6) made available by the eID Applet service.

eID Applet Service implementations

For the moment we only fully support Java EE servlet containers out of the box.

At the same time this serves as the reference implementation. For other web

application environments like the ASP.NET web application environment and the

PHP environment we strongly advise to use the eID Identity Provider and eID

Digital Signature Service products to integrate eID within ASP.NET and PHP based

web applications.

eID Applet Service HTTP session

When using web frameworks like JBoss Seam you might stumble on conversation

preservation issues because of the redirect executed by the eID Applet at the

end of the performed eID operation. When using a conversation scoped JBoss

Seam managed bean (like the built-in redirect component), you can preserve the

conversation across the eID Applet screen flow by adding the following HTTP

eID Applet Developer's Guide

8

parameter to the TargetPage applet parameter: TargetPage :'your-target-

page.seam?conversationId=#{conversation.id}',

3.1. eID Identification

By default the eID Applet Service will operate the eID Applet to make it perform an eID

identification. This is also known as data capture. Via this eID operation your web application is

capable of reading out the identity data (i.e. name, first name, date of birth, address, ...) of the

user his eID card.

The eID Applet Service Servlet can be configured via your web.xml web deployment descriptor

as shown in the following example:

<servlet>

 <servlet-name>AppletServiceServlet</servlet-name>

 <servlet-class>

 be.fedict.eid.applet.service.AppletServiceServlet

 </servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>AppletServiceServlet</servlet-name>

 <url-pattern>/applet-service</url-pattern>

</servlet-mapping>

The eID Applet Service, which can be found in the eid-applet-service-x.x.x.jar artifact,

has some 3rd party dependencies. These artifacts are located under the lib/ directory inside

the eID Applet SDK package. Depending on your Java EE runtime environment you should place

these JAR files under the META-INF/lib directory of your web application.

In case that you use Maven as build-system, you can configure the following Maven repository:

<repository>

 <id>e-contract</id>

 <url>https://www.e-contract.be/maven2/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

</repository>

The eID Applet project comes with a BOM that can be included in your POM file as follows:

eID Identification

9

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-bom</artifactId>

 <version>1.2.0.Beta1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

Now you can simply add the eID Applet Service dependency as follows:

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-service</artifactId>

</dependency>

Depending on the Servlet container that you use, you might need to exclude certain transitive

dependencies.

eID Applet Service availability

One can always check for eID Applet Service availability by manually browsing to

the location of the eID Applet Service servlet as configured in your web.xml Java

EE web deployment descriptor.

After a successful identification took place, the AppletServiceServlet eID Applet Service

will push at least the eid.identity attribute, which holds the parsed identity fields,

to the servlet container session. The eid.identity session attribute is of Java type

be.fedict.eid.applet.service.Identity . More information on the exposed attributes can

be found in the Javadoc API documentation of the eID Applet Service artifact. The Javadoc

documentation is part of the eID Applet SDK package.

eID Session Attributes

To ease integration of the eID Applet Service in web frameworks like JBoss

Seam we have provided a top-level eid session attribute and getters on all

exposed session attribute types. The top-level eid session attribute is of Java

type be.fedict.eid.applet.service.EIdData . This means that the identity

is available via both eid.identity session attribute and invocation of the

eID Applet Developer's Guide

10

getIdentity() method on the eid session attribute. This way we cover as much

Java web frameworks as possible.

CDI Support

The eID Applet SDK contains an eid-applet-service-cdi artifact that offers

initial support for CDI containers. The artifact does not require JBoss Seam 3.1 at

run-time. When using Maven, include the CDI artifact via:

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-service-cdi</artifactId>

</dependency>

3.1.1. eID Address

During an eID identification operation the address on the eID card can be retrieved by setting the

following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludeAddress</param-name>

 <param-value>true</param-value>

</init-param>

After a successful eID identification, the eID address will be available via the eid.address session

attribute within the servlet container session context. The eid.address session attribute is of

Java type be.fedict.eid.applet.service.Address . The available fields and functions of the

Address class are described within the Javadoc API documentation which is part of the eID Applet

SDK package.

3.1.2. eID Photo

During an eID identification operation the citizen's photo on the eID card can be retrieved by setting

the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludePhoto</param-name>

 <param-value>true</param-value>

</init-param>

eID Identification

11

After a successful eID identification, the photo will be available via the eid.photo session attribute

within the servlet container session context. The eID photo is of Java type byte[] and uses a

JPEG image format.

We provide a PhotoServlet to ease visualization of the eID photo within your web application.

Configure the PhotoServlet as follows:

<servlet>

 <servlet-name>PhotoServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.PhotoServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>PhotoServlet</servlet-name>

 <url-pattern>/photo.jpg</url-pattern>

</servlet-mapping>

After a successful eID identification you can display the eID photo by putting next HTML tag in

your web page:

3.1.3. eID Certificates

If you need to have explicit access to the eID citizen certificates, you can instruct the eID Applet

to extract the certificates via the following eID Applet Service servlet configuration:

<init-param>

 <param-name>IncludeCertificates</param-name>

 <param-value>true</param-value>

</init-param>

After a successful eID identification, the certificates will be available as session attributes of

Java type java.security.cert.X509Certificate . The authentication certificate will be

available as eid.certs.authn session attribute. The non-repudiation (i.e. signature) certificate

will be available as eid.certs.sign session attribute. The intermediate Citizen CA certificate

will be available as eid.certs.ca session attribute. The Root CA certificate will be available as

eid.certs.root session attribute.

3.1.4. Output to PDF

The eID Applet SDK comes with a servlet component that allows you to output the eID identity

data to PDF. This can be useful if you want to print the eID identity data from within your web

application pages. The PDF servlet can be configured as follows:

eID Applet Developer's Guide

12

<servlet>

 <servlet-name>PdfServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.PdfServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>PdfServlet</servlet-name>

 <url-pattern>/identity.pdf</url-pattern>

</servlet-mapping>

After a successful eID identification, the PDF is available via:

View as PDF

3.1.5. Output to KML (Google Earth)

The eID Applet Service also comes with a servlet for exporting the eID identity data to (zipped)

KML. This can be useful if you want to visualize the eID identity data on a map.

Please note that the eID applet does not provide geocoding services, i.e., addresses are not

automatically converted to geographic coordinates. However, the KMZ file can be opened in

applications that do provide geocoding services, like Google Earth. Figure 3, “eID Identity in

Google Earth” shows a screenshot of an eID identity visualized via Google Earth.

Figure 3. eID Identity in Google Earth

eID Identification

13

The servlet is configured as follows:

<servlet>

 <servlet-name>KmlServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.KmlServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>KmlServlet</servlet-name>

 <url-pattern>/identity.kmz</url-pattern>

</servlet-mapping>

After a successful eID identification, the Google Earth KMZ file is available via:

View in Google Earth

3.1.6. JSON

The eID Applet SDK comes with a servlet to support eID identity data retrieval inside your web

application via JSON. The JSON servlet is configured as follows:

<servlet>

 <servlet-name>JSONServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.JSONServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>JSONServlet</servlet-name>

 <url-pattern>/identity.js</url-pattern>

</servlet-mapping>

The retrieved JSON data object has a structure similar to the following example:

{

 identity: {

 name: "SPECIMEN",

 firstName: "Alice Geldigekaart",

 dateOfBirth: "Fri Jan 01 00:00:00 CET 1971",

 gender: "FEMALE"

 },

 address: {

 streetAndNumber: "Meirplaats 1 bus 1",

 municipality: "Antwerpen",

 zip: "2000"

 }

eID Applet Developer's Guide

14

}

3.1.7. Identity Data Integrity

During an eID identification operation the eID Applet Service can perform integrity verification on

the retrieved eID identity data. This feature prevents malicious parties to alter critical identity data.

To enable this functionality as part of an eID identification operation, you need to implement

the IdentityIntegrityService interface. This service provider interface (SPI) can be found

in the eid-applet-service-spi artifact. The corresponding service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component

needs to be communicated to the eID Applet Service via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>IdentityIntegrityService</param-name>

 <param-value>

 your/location/in/jndi/IdentityIntegrityServiceBean

 </param-value>

</init-param>

The Javadoc documentation of the IdentityIntegrityService SPI is part of the eID Applet

SDK package.

Java EE Application Classpath

In an EJB Java EE application the eid-applet-service-spi artifact should be

moved from your web application WEB-INF/lib WAR artifact to the EAR scoped

classpath. Depending on your used Java EE application server is should be

registered in application.xml as a Java module or moved to the lib/ directory

of your EAR to avoid classpath issues in your application server.

Java EE 6 Web Profile support

To support the Java EE 6 Web Profile we have foreseen the usage of two types

of service component lookups.

The first one is JNDI based. This type of service lookup allows you to

utilize EJB3 session beans as service provider interface implementation. Since

Java EE 6 the JNDI naming of EJB3 session beans has been standardized.

Refering to your component can now be done via, for example, java:module/

AuthenticationRequestServiceBean

eID Identification

15

The second type is via simple Java class name references. This type of service

lookup is meant for lightweight servlet container environment. The implementing

class needs a default constructor in order for the eID Applet Service to be able to

instantiate it.

For example the SignatureService interface implementing component

can be referred to via both SignatureService init-param and via

SignatureServiceClass init-param . The SignatureService init-param will

trigger a JNDI lookup of the signature service. The SignatureServiceClass

init-param will trigger a class instantiation using the default constructor of the

given class.

The identity integrity service prevents malicious parties from altering the identity data. However,

this does not prevent malicous parties to replace the identity data with that of another citizen. To

prevent replacement of identity data, one can use a so called authenticated eID identification.

If the eID identification is preceded with an eID authentication then the eID Applet Service is able

to link the authenticated national registry number with the one found in the eID identity file during

identity integrity verification. This makes for a bullet-proof eID identification that cannot be forged.

For some applications that need eID identification of citizen B after eID authentication of citizen

A, you might want to disable this feature. Do so via:

<init-param>

 <param-name>SkipNationalNumberCheck</param-name>

 <param-value>true</param-value>

</init-param>

3.1.8. Privacy Service

The application can define an identity data usage description at runtime by means of a privacy

service component. To enable this functionality as part of an eID identification operation, you need

to implement the PrivacyService interface. This service provider interface (SPI) can be found

in the eid-applet-service-spi artifact. The corresponding service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component

needs to be communicated to the eID Applet Service via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>PrivacyService</param-name>

 <param-value>your/location/in/jndi/PrivacyServiceBean</param-value>

</init-param>

eID Applet Developer's Guide

16

The Javadoc documentation of the PrivacyService SPI is part of the eID Applet SDK package.

3.2. eID Authentication

The eID Applet can be used to authenticate an end user via the eID card. eID based entity

authentication is much safer than a simple password based authentication scheme since the eID

card makes a two-factor authentication possible.

eID Applet Authentication Configuration

There are many different eID Applet configurations possible for eID Authentication.

The optimal configuration highly depends on your web application requirements.

In case of doubt contact us at the eID Applet Google Group [http://

groups.google.com/group/eid-applet] mailing list for additional advice.

To perform an eID authentication, you need to implement the AuthenticationService

interface. This interface can be found as part of the eid-applet-service-spi artifact. This

service component (EJB3) session bean should be registered somewhere in JNDI. The JNDI

location of this service component needs to be set via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>AuthenticationService</param-name>

 <param-value>your/location/in/jndi/AuthenticationServiceBean</param-value>

</init-param>

The Javadoc documentation of the AuthenticationService SPI is part of the eID Applet SDK

package.

After a successful authentication the eid.identifier session attribute will contain a unique

identifier (the national registration number) for the user. The eid.identifier session attribute

is of Java type java.lang.String .

Usage of the national registration number

To respect the citizen's privacy, the national registration number should not be

abuse for linking identity data. Profiling based on eID data linking is forbidden by

law. Hence one cannot save the national registration number within a database as

primary key without proper authorization.

http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet

eID Authentication

17

Mac OS X

You need a version of Mac OS X that supports Java 6.

eID Middleware

The eID Applet is using not using the eID Middleware to perform eID operations.

The eID Applet is directly accessing the eID card via the PC/SC interface. This

requires a Java 6 client runtime.

By default the eID Applet will sign a sequence similar to (salt, challenge) using the

authentication private key of the citizen's eID card. The challenge is send over SSL by the eID

Applet Service. The salt value is produced by the eID Applet itself. The salt value prevents

that the eID Applet is forced into signing a given server-side value. To prevent a certain type

of man-in-the-middle attack we can make the eID Applet to sign a sequence similar to (salt,

hostname, challenge) . This feature can be enabled by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>Hostname</param-name>

 <param-value>www.PutYourSiteHostnameHere.be</param-value>

</init-param>

Hostname verification

It is strongly advised to enable this hostname verification feature to reduce security

vulnerability.

To prevent DNS attacks one can even make the eID Applet sign the IP address of the server. This

feature can be enabled by setting the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>InetAddress</param-name>

 <param-value>1.2.3.4</param-value>

</init-param>

If you enable both Hostname and InetAddress features at the same time, the eID Applet will be

signing a sequence similar to (salt, hostname, IP address, challenge) . The hostname

and IP address are the same as seen by the web browser.

eID Applet Developer's Guide

18

3.2.1. Non-reversible Citizen Identifier

After a successful eID authentication took place, the eid.identifier session attribute will contain

the national registry number. In some cases the national registry number cannot be used as

is for unique user identifier. The eID Applet Service features Non-Reversible Citizen Identifiers

(NRCID) to transform the national registry number into an application domain specific identifier.

The NRCID is based on the HMAC-SHA1 of the National Registry Number, optionally appended

with an application identifier and/or organization identifier. This feature can be enabled by setting

the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>NRCIDSecret</param-name>

 <param-value>place-your-application-secret-here</param-value>

</init-param>

The secret should be hexadecimal encoded and at least 128 bits (16 bytes) long. Thus the

hexadecimal encoded secret should be at least 32 characters long.

The optional application identifier and organization identifier can be specified via the NRCIDAppId

and NRCIDOrgId init parameters.

3.2.2. Secure Channel Binding

Tunneled entity authentication protocols like the one implemented by the eID Applet are subject

to man-in-the-middle attacks without proper secure channel binding put in place. Cryptographic

end-point channel binding has been implemented by means of digesting the TLS server certificate

as part of the authentication signature. This option can be activated via the following init-param

on the AppletServiceServlet :

<init-param>

 <param-name>ChannelBindingServerCertificate</param-name>

 <param-value>/path/to/your/server/certificate.der</param-value>

</init-param>

The server certificate should be in DER encoded format or in PEM format.

Server Certificate Channel Binding

It is strongly advised to activate server certificate cryptographic channel binding to

have equivalent security properties compared to mutual TLS entity authentication.

eID Authentication

19

The server certificate used to verify the secure channel binding can also be provided at runtime

by implementing an SPI component. This option can be activated via the following init-param

on the AppletServiceServlet :

<init-param>

 <param-name>ChannelBindingService</param-name>

 <param-value>your/location/in/jndi/ChannelBindingServiceBean</param-value>

</init-param>

The Javadoc documentation of the ChannelBindingService SPI is part of the eID Applet SDK

package.

Besides server certificate channel binding the eID Applet also supports unique channel binding

using the TLS session identifier. This option can be activated via the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>SessionIdChannelBinding</param-name>

 <param-value>true</param-value>

</init-param>

This will make the authentication signature to also digest the TLS session identifier.

Channel Binding

Secure channel binding based on unique channel binding using the TLS session

identifier alone is not enough! Always use at least server certificate cryptographic

channel binding. You can combine this with (unsecure) unique channel binding

using the TLS session identifier if appropriate.

3.2.3. Explicit PIN entry

The eID card offers caching of the PIN authorization when creating an authentication signature.

Some applications might require a PIN entry upon each authentication request. This can be

achieved by performing an eID card logoff right before the creation of the authentication signature.

Activate this feature via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>PreLogoff</param-name>

 <param-value>true</param-value>

</init-param>

eID Applet Developer's Guide

20

3.2.4. Authenticated Identification

It is possible to combine an eID authentication operation with an eID identification operation.

Activate the eID identification as part of the eID authentication via the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>IncludeIdentity</param-name>

 <param-value>true</param-value>

</init-param>

As was the case for eID identification this will make the eID identity available as attributes within

the HTTP servlet session context.

Also include the eID address via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludeAddress</param-name>

 <param-value>true</param-value>

</init-param>

Also include the eID photo via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludePhoto</param-name>

 <param-value>true</param-value>

</init-param>

The identity integrity service can also be activated when combining eID authentication with eID

identification by configuring an IdentityIntegrityService SPI implementation.

3.2.5. eID Certificates

If you need to have explicit access to the eID citizen certificates, you can instruct the eID Applet

to extract the certificates via the following eID Applet Service servlet configuration:

<init-param>

 <param-name>IncludeCertificates</param-name>

 <param-value>true</param-value>

</init-param>

eID Signatures

21

After a successful eID authentication, the certificates will be available as session attributes

of Java type java.security.cert.X509Certificate . The authentication certificate will be

available as eid.certs.authn session attribute. The non-repudiation (i.e. signature) certificate

will be available as eid.certs.sign session attribute. The intermediate Citizen CA certificate

will be available as eid.certs.ca session attribute. The Root CA certificate will be available as

eid.certs.root session attribute.

3.2.6. eID secure PIN pad card reader

FedICT developed a new secure PIN pad card reader that features eID transaction confirmation

on the hardware device itself. Basically this secure card reader intercepts signature (both

authentication and non-repudiation) computations that use a specific hash algorithm. The OID

for this hash algorithm is 2.16.56.1.2.1.3.1 . For this specific hash algorithm the digest value

is considered as being plain text that can be visualized by the hardware device. This allows for

hardware based transaction confirmation. This feature gives applications additional means of

ensuring the user consent in the context of a certain application level transaction.

The eID Applet has explicit support for such transaction messages as part of the authentication

process. To enable this feature you have to implement the SecureCardReaderService SPI. The

JNDI location of this service component needs to be set via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>SecureCardReaderService</param-name>

 <param-value>

 your/location/in/jndi/SecureCardReaderServiceBean

 </param-value>

</init-param>

Smart card readers that do not offer support for this plain text hash algorithm can of course not

visualize the transaction message.

3.3. eID Signatures

The eID Applet can also be used to create digital signatures using the non-repudiation

eID certificate. The supported signature algorithms are SHA1-RSA-PKCS1 , SHA224-RSA-PKCS1

, SHA256-RSA-PKCS1 , SHA384-RSA-PKCS1 , SHA512-RSA-PKCS1 , RIPEMD128-RSA-PKCS1 ,

RIPEMD160-RSA-PKCS1 , RIPEMD256-RSA-PKCS1 , SHA1-RSA/PSS-PKCS1 , and SHA256-RSA/PSS-

PKCS1 .

eID Applet Developer's Guide

22

Legally Binding eID Digital Signatures

Please be aware that the eID digital signatures are legally binding by law. Don't

make the citizen sign digital documents unless it is absolutely necessary from a

legal point of view for the correct functioning of your business work flow.

To use this functionality you need to implement the SignatureService interface. This interface

can be found in the eid-applet-service-spi artifact. This service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component needs

to be set via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>SignatureService</param-name>

 <param-value>your/location/in/jndi/SignatureServiceBean</param-value>

</init-param>

The Javadoc documentation of the SignatureService SPI is part of the eID Applet SDK package.

During pre-sign phase you can receive the non-repudiation certificate chain via:

<init-param>

 <param-name>IncludeCertificates</param-name>

 <param-value>true</param-value>

</init-param>

You can even receive the signing identity by means of the IncludeIdentity , IncludeAddress

and IncludePhoto init-params.

The eID Applet Service can be configured to perform two basic types of digital signatures:

• The digest value to be signed originates solely from the SignatureService implementing

service component.

• The eID Applet first sends over a set of digest values calculated from local files. These files

are selected by the citizen via an eID Applet file user interface. Out of this set of digest values

the SignatureService implementing service component then calculates a super digest value.

This digest value is signed using the eID Applet.

The supported file digest algorithms are SHA-1 , SHA-256 , SHA-384 , and SHA-512 .

This type of digital signature operation can be used to construct for example XML Signatures,

XAdES Signatures or PDF Signatures.

eID Administration

23

The type of digital signature created by the eID Applet is completely determined by the

implementation of the SignatureService SPI. We provide several base implementation of the

SignatureService SPI as part of the eid-applet-service-signer artifact. The most important

signature service implementations provided by the eID Applet SDK are:

• ODF 1.2 signatures (supported by OpenOffice.org 3.1/3.2)

• Office OpenXML (supported by Microsoft Office 2007/2010)

• CMS signatures (PKCS#7)

Besides different signature service implementations we also provide a XAdES-X-L v1.4.2

implementation as an XML signature service facet.

e-Signatures Service Directive

The expert group on the e-Signatures Service Directive has proposed XAdES as

standard signature format.

eID Digital Signature Service

Instead of directly using the eID Applet to create digital signatures, one can also

use the eID Digital Signature Service SOA product developed by FedICT. The eID

DSS product is available at the eID DSS [http://code.google.com/p/eid-dss/] site.

PKI Validation

The eID Applet Service does not perform any PKI validation. So the signature

service component, authentication service component and the identity integrity

component need to implement PKI validation of the citizen certificates itself. PKI

validation is out of scope of the provided eID Applet Service.

A PKI validation module tailored for the Belgian eID PKI is available at the jTrust

Google Code [http://code.google.com/p/jtrust/] site.

Besides the jTrust Java library we also offer an eID Trust Service SOA product to

perform eID PKI validations via an XKMS2 based web service. More information

on the eID Trust Service product is available at the eID Trust Service Google Code

[http://code.google.com/p/eid-trust-service/] site.

3.4. eID Administration

The eID Applet allows for some administrative eID tasks like changing the PIN and unblocking the

PIN. This feature has been implemented to break the hard dependency on the eID Middleware.

http://code.google.com/p/eid-dss/
http://code.google.com/p/eid-dss/
http://code.google.com/p/jtrust/
http://code.google.com/p/jtrust/
http://code.google.com/p/jtrust/
http://code.google.com/p/eid-trust-service/
http://code.google.com/p/eid-trust-service/

eID Applet Developer's Guide

24

The eID PIN change administrative task can be executed by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>ChangePin</param-name>

 <param-value>true</param-value>

</init-param>

The eID unblock PIN administrative task can be executed by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>UnblockPin</param-name>

 <param-value>true</param-value>

</init-param>

3.5. Generic eID Applet Service settings

The settings listed in this section apply to eID identification operations, eID authentication

operations, eID signature operations, and eID administration operations.

3.5.1. Secure Client Environment

The eID Applet offers functionality to check whether the client environment is secure enough

given the application requirements. In case the eID Applet Service detects an insecure client

environment the eID Applet can:

• show an error message and abort the requested eID operation.

• show a warning message and ask the citizen whether he/she wants to continue or not.

To activate this functionality you need to implement the SecureClientEnviromentService

interface. This interface can be found in the eid-applet-service-spi artifact. This service

component (EJB3) session bean should be registered somewhere in JNDI. The JNDI

location of this service component needs to be set via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>SecureClientEnvironmentService</param-name>

 <param-value>

 your/location/in/jndi/SecureClientEnvironmentServiceBean

 </param-value>

</init-param>

Generic eID Applet Service settings

25

The Javadoc documentation of the SecureClientEnvironmentService SPI is part of the eID

Applet SDK package.

Additional client environment information can be pushed to the eID Applet Service by adding the

following eID Applet parameters within your web page eID Applet configuration:

NavigatorUserAgent : navigator.userAgent,

NavigatorAppName : navigator.appName,

NavigatorAppVersion : navigator.appVersion

3.5.2. eID Card Removal

The eID Applet can ask the citizen for eID card removal after performing the selected eID

operation. This option can be used to limit the window of opportunity for malware to abuse the

eID card.

The eID card removal can be activated by setting the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>RemoveCard</param-name>

 <param-value>true</param-value>

</init-param>

3.5.3. eID Card Logoff

After an eID authentication, eID signature, or eID administration task (i.e. PIN change) the eID

card will re-use the PIN authorization for future eID authentication operations. This feature was

originally implemented on the eID JavaCard Applet (which is located inside the eID chip) to allow

for mutual authenticated SSL without the need to re-enter the PIN on each SSL session renewal.

Although this makes sense in the context of SSL, it actually makes for a serious eID security

weakness: SSO should be handled at the IdP level, not at the card level. Only an IdP can have

notion of trust domains between different web applications. Luckily the eID card foresees in an eID

card logoff. This eID logoff feature can be enabled during both eID authentication or eID signature

operations by setting the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>Logoff</param-name>

 <param-value>true</param-value>

</init-param>

eID Applet Developer's Guide

26

Enable eID card logoff

It is strongly advised to enable the eID card logoff feature to prevent abuse of the

authentication functionality of the eID card.

3.5.4. Auditing

To comply with certain regulations one might need to have an audit trace of the activities performed

on the eID Applet Service by clients. The eID Applet Service offers auditing support by means

of the SPI design pattern.

To activate the audit functionality you need to implement the AuditService interface. This

interface can be found in the eid-applet-service-spi artifact. This service component (EJB3)

session bean should be registered somewhere in JNDI. The JNDI location of this service

component needs to be set via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>AuditService</param-name>

 <param-value>your/location/in/jndi/AuditServiceBean</param-value>

</init-param>

The Javadoc documentation of the AuditService SPI is part of the eID Applet SDK package.

3.5.5. Alternative UI

The eID Applet offers its own user interface for interactive handling of eID card events. As some

web application technologies (like Flex) like to construct their own user interface we created

a Javascript based callback mechanism so that these web technologies can visualize the info

messages themselves.

The web developer can install the info message callback inside a web page as follows:

<script src="https://www.java.com/js/deployJava.js"></script>

<script>

 var attributes = {

 code :'be.fedict.eid.applet.Applet.class',

 archive :'eid-applet-package.jar',

 width :1,

 height :1,

 mayscript :'true'

 };

 var parameters = {

 AppletService :'applet-service',

 MessageCallback :'messageCallback',

Generic eID Applet Service settings

27

 MessageCallbackEx : 'messageCallbackEx'

 };

 var version = '1.6';

 deployJava.runApplet(attributes, parameters, version);

</script>

<script>

 function messageCallback(status, message) {

 document.getElementById('appletMessage').innerHTML = '' + status + ': ' + message + '</

b>';

 }

 function messageCallbackEx(status, messageId, message) {

 document.getElementById('appletMessageEx').innerHTML = '' + status + ': ' + messageId + ' = ' + message + '</

b>';

 }

</script>

<div id="appletMessage">Message placeholder</div>

<div id="appletMessageEx">Message placeholder</div>

As you can see the web developer can install a Javascript callback function by setting the

MessageCallback eID Applet parameter. The status parameter can be either NORMAL or ERROR

. In our example we simply display the incoming message via some dynamic HTML. Of course

more complex visualizations are possible here. Via the MessageCallbackEx eID Applet parameter

you can even receive a machine processable message identifier.

mayscript

Don't forget the mayscript:'true' attribute, else the eID Applet will not be able

to invoke Javascripts inside the browser window.

3.5.6. Requiring a secure smart card reader

The eID Applet Service can be configured to make the eID Applet to check whether the eID

operation that requires the user to enter the eID PIN code (in case of authentication or non-

repudiation signature, PIN change or PIN unblock) is being executed using a CCID secure smart

card reader. Although this feature could be spoofed it aims to increase the security awareness as

required for some applications. This feature can be enabled by setting the following init-param

on the AppletServiceServlet :

<init-param>

 <param-name>RequireSecureReader</param-name>

 <param-value>true</param-value>

</init-param>

eID Applet Developer's Guide

28

Not everybody has a secure pinpad reader

Before enabling this feature, make sure that your target audience indeed has

access to a secure pinpad reader.

3.5.7. Run-time selection of required eID identity data

Places where you can use IncludeIdentity , IncludeAddress , IncludePhoto or

IncludeCertificates one can also use the IdentityService SPI to have run-time selection

of the eID identity data objects that have to be retrieved from the eID card. To activate this

functionality you need to implement the IdentityService interface. This interface can be found

in the eid-applet-service-spi artifact. This service component (EJB3) session bean should

be registered somewhere in JNDI. The JNDI location of this service component needs to be set

via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IdentityService</param-name>

 <param-value>your/location/in/jndi/IdentityServiceBean</param-value>

</init-param>

The Javadoc documentation of the IdentityService SPI is part of the eID Applet SDK package.

3.5.8. Identity Data Files

Some applications might require access to the actual raw identity data files. You can configure the

eID Applet Service to push the raw identity data files (if available as specified during the request)

into the HTTP session via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludeDataFiles</param-name>

 <param-value>true</param-value>

</init-param>

This will make the eID identity file available within the HTTP session under the

eid.data.identity session attribute as byte array. The eID address file will be available within

the HTTP session under the eid.data.address session attribute as byte array.

4. Maven Integration

In this section we'll discuss the different aspects related to integrating the eID Applet within Maven

based projects.

Maven Integration

29

First of all, add the following repository configuration under <repositories> within you pom.xml

Maven configuration file :

<repository>

 <id>e-contract</id>

 <url>https://www.e-contract.be/maven2/</url>

 <releases>

 <enabled>true</enabled>

 </releases>

</repository>

We assume that you're using a <dependencyManagement> element within your pom.xml Maven

project file. Put the following declaration:

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-bom</artifactId>

 <version>1.2.0.Beta1</version>

 <type>pom</type>

 <scope>import</scope>

</dependency>

Integration of the eID Applet within a Java EE web application consists out of two tasks. First we

have to add the eID Applet itself as web resource to the web application. In order to do so, add

the following dependencies under <dependencies> :

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-package</artifactId>

 <scope>provided</scope>

</dependency>

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-js</artifactId>

 <scope>provided</scope>

</dependency>

Now you can include the eID Applet JAR and corresponding Javascript as web resource via:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-dependency-plugin</artifactId>

eID Applet Developer's Guide

30

 <executions>

 <execution>

 <id>unpack</id>

 <phase>process-resources</phase>

 <goals>

 <goal>unpack</goal>

 </goals>

 <configuration>

 <artifactItems>

 <artifactItem>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-js</artifactId>

 <outputDirectory>

 ${project.build.directory}/${project.artifactId}-

${project.version}

 </outputDirectory>

 </artifactItem>

 </artifactItems>

 <includes>*.js</includes>

 </configuration>

 </execution>

 <execution>

 <id>copy</id>

 <phase>process-resources</phase>

 <goals>

 <goal>copy</goal>

 </goals>

 <configuration>

 <artifactItems>

 <artifactItem>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-package</artifactId>

 <type>jar</type>

 <outputDirectory>

 ${project.build.directory}/${project.artifactId}-

${project.version}

 </outputDirectory>

 </artifactItem>

 </artifactItems>

 </configuration>

 </execution>

 </executions>

</plugin>

The inclusion of the eID Applet Service depends somehow on what the runtime already provided

by itself and what functionality you want to use exactly. However, most of the time the following

dependency should suffice:

eID Applet Web Application Deployment

31

<dependency>

 <groupId>be.fedict.eid-applet</groupId>

 <artifactId>eid-applet-service</artifactId>

 <exclusions>

 <exclusion>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 </exclusion>

 <exclusion>

 <groupId>com.lowagie</groupId>

 <artifactId>itext</artifactId>

 </exclusion>

 <exclusion>

 <groupId>com.googlecode.json-simple</groupId>

 <artifactId>json-simple</artifactId>

 </exclusion>

 </exclusions>

</dependency>

5. eID Applet Web Application Deployment

You can deploy your eID Applet enabled web application over a lot of different network topologies,

depending on the setup of your infrastructure. The easiest configuration is a setup where you

terminate the SSL on the Application Server itself.

5.1. AJP proxy

Another option is to use an AJP proxy. An example of how to configure the Apache HTTPD AJP

proxy is given below. In /etc/httpd/conf.d/proxy_ajp.conf you put:

LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

Now you can configure (in some site specific httpd config file) the following:

<IfModule mod_proxy_ajp.c>

 ProxyRequests On

 ProxyVia On

 <Location /eid-applet-test>

 Order allow,deny

 Allow from all

 ProxyPass ajp://localhost:8009/eid-applet-test

 </Location>

eID Applet Developer's Guide

32

</IfModule>

This AJP proxy can then terminate the SSL in a transparent way towards the Application Service.

On an Ubuntu server you can add the following configuration to your SSL site (which will most

likely live under /etc/apache2/sites-enabled/default-ssl).

<IfModule mod_proxy_ajp.c>

 ProxyRequests On

 ProxyVia On

 <Location /eid-applet-test>

 Order allow,deny

 Allow from all

 ProxyPass ajp://localhost:8009/eid-applet-test

 </Location>

 <Location /eid-applet-beta>

 Order allow,deny

 Allow from all

 ProxyPass ajp://localhost:8009/eid-applet-beta

 </Location>

</IfModule>

5.2. Reverse proxy

Some configuration use non-AJP aware reverse proxies. An example on how to configure the

Apache HTTPD as a reverse proxy is given below:

ProxyRequests Off

<Proxy *>

 Order deny,allow

 Allow from all

</Proxy>

<Location /eid-applet-test/>

 ProxyPass http://localhost:8080/eid-applet-test/

 ProxyPassReverse http://localhost:8080/eid-applet-test/

</Location>

Because the Application Server no longer receives the SSL information as provided by the AJP

protocol, the eID Applet Service can no longer detect whether it's using a secure connection or

Tomcat 7

33

not. The eID Applet Service can be configured to skip the secure connection check using the

following init-param on the AppletServiceServlet :

<init-param>

 <param-name>SkipSecureConnectionCheck</param-name>

 <param-value>true</param-value>

</init-param>

It is furthermore important to have a servlet container session cookie without the HttpOnly flag

set. Else the eID Applet Service will push the eID identity credentials in the wrong Application

Server HTTP session.

5.3. Tomcat 7

When running the eID Applet Service on Tomcat 7, you might receive the following error message

within the eID Applet:

ERROR: no session cookie detected!

This error occurs because Tomcat 7 will per default set the HttpOnly flag on the JSESSIONID

session cookie. This prevents Javascript and web browser plugins like the Java runtime plugin

to receive the session cookie. It is important that the Java runtime plugin is capable of receiving

the session cookie as the eID Applet Service must be able to push the eID data within the same

web session as seen by the web browser.

There are several solutions:

• One can check the useHttpOnly attribute within the <Context> element and set it back to

false .

• Or you can add ;jsessionid=... to the AppletService eID Applet parameter so that the eID

Applet Service will receive the correct JSESSIONID reference.

6. Accessibility

6.1. Java Accessibility Bridge

The Java Accessibility Bridge provides a bridge between the accessibility features of Java desktop

applications - including applets - running inside the JVM, and the native assistive technologies of

the operating system. This is not eID-specific, by the way, the JAB is part of the Java SE desktop

platform.

There is no configuration required on the server side to enable the accessibility features of the eID

applet. On the client side, however, users should verify that the JAB is installed on their computer

and is supported by the assistive software of their choice.

eID Applet Developer's Guide

34

6.1.1. Mac OS X

The bridging code is built-in on Mac OS X, no additional installation is required. Starting with v10.4,

Mac OS X includes the screen reader Voice Over.

See also the Java Development Guide for Mac OS X. [http://developer.apple.com/mac/library/

documentation/Java/Conceptual/Java14Development/04-JavaUIToolkits/JavaUIToolkits.html]

6.1.2. Windows

Windows users should install the latest version of the JAB for Windows, available for free from

Oracle's website. [http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136191.html]

6.1.3. Linux

Ubuntu users should install the libaccess-bridge-java-jni package.

See also the documentation on the current and future accessibility architecture of GNOME

[http://live.gnome.org/Accessibility/BonoboDeprecation] and KDE [http://accessibility.kde.org/

developer/bridge.php] .

6.2. Screen Reader Support

Please note that, although recent screen readers should be able to read out the dialog boxes

and status messages of the eID applet, the exact behavior depends on operating system, screen

reader software and browser version.

For instance, some configurations do not automatically read out non-focusable text inside dialog

boxes. However, it is often possible to read out the dialog boxes by using a keyboard command

(JAWS and NVDA users may want to try Insert+B). Please consult your screen reader's manual

for more information.

7. eID Applet Protocol

In this section we will elaborate on the eID Applet protocol used in the communication between the

eID Applet and the eID Applet Service. If you use the eID Applet Service servlet implementation

that comes with the eID Applet SDK you actually don't need to know the details of the eID Applet

protocol. However, this information can be useful for web application developers that use other

web frameworks than a Java EE servlet container based framework.

The eID Applet Protocol is based on the HTTP protocol using the POST method. Parameters are

passed as HTTP headers and for binary data the HTTP body is used. The messages should be

transported over a secure SSL connection.

In Figure 4, “eID Applet Protocol Graph” you find an automatically generated graph representation

of the eID Applet protocol. A protocol run starts with the HelloMessage message sent by the eID

http://developer.apple.com/mac/library/documentation/Java/Conceptual/Java14Development/04-JavaUIToolkits/JavaUIToolkits.html
http://developer.apple.com/mac/library/documentation/Java/Conceptual/Java14Development/04-JavaUIToolkits/JavaUIToolkits.html
http://developer.apple.com/mac/library/documentation/Java/Conceptual/Java14Development/04-JavaUIToolkits/JavaUIToolkits.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136191.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136191.html
http://live.gnome.org/Accessibility/BonoboDeprecation
http://live.gnome.org/Accessibility/BonoboDeprecation
http://accessibility.kde.org/developer/bridge.php
http://accessibility.kde.org/developer/bridge.php
http://accessibility.kde.org/developer/bridge.php

eID Applet Protocol Messages

35

Applet to the eID Applet Service, which has been marked by the green vertex. Depending on the

eID Applet Service configuration different paths will be followed ending in some red vertex.

Figure 4. eID Applet Protocol Graph

eID Applet Service implementations

Instead of implementing your own eID Applet Service for ASP.NET or PHP it

might be easier to integrate the eID within your web applications by using FedICT

products like the eID Identity Provider and the eID Digital Signature Service. As

these products implement services based on open standards like OpenID you

already have various implementations available for integrating via these open

protocols.

7.1. eID Applet Protocol Messages

The following documentation has been generated automatically.

7.1.1. HelloMessage

This message starts a communication session between eID Applet and eID Applet Service. It sets

the protocol state to: INIT

eID Applet Developer's Guide

36

Table 2. HelloMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true HelloMessage

X-AppletProtocol-Language false Some String value.

X-AppletProtocol-Version true 1

Allowed eID Applet Service response messages are: Section 7.1.10,

“IdentificationRequestMessage” Section 7.1.11, “CheckClientMessage” Section 7.1.13,

“AuthenticationRequestMessage” Section 7.1.15, “AdministrationMessage” Section 7.1.16,

“SignRequestMessage” Section 7.1.17, “FilesDigestRequestMessage” Section 7.1.18,

“SignCertificatesRequestMessage”

7.1.2. ClientEnvironmentMessage

This message is only accepted if the eID Applet Service protocol state is: ENV_CHECK

Table 3. ClientEnvironmentMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true ClientEnvironmentMessage

X-AppletProtocol-JavaVersion true Some String value.

X-AppletProtocol-JavaVendor true Some String value.

X-AppletProtocol-OSName true Some String value.

X-AppletProtocol-OSArch true Some String value.

X-AppletProtocol-OSVersion true Some String value.

X-AppletProtocol-

NavigatorUserAgent

false Some String value.

X-AppletProtocol-

NavigatorAppName

false Some String value.

X-AppletProtocol-

NavigatorAppVersion

false Some String value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Allowed eID Applet Service response messages are: Section 7.1.10,

“IdentificationRequestMessage” Section 7.1.12, “InsecureClientMessage” Section 7.1.13,

“AuthenticationRequestMessage” Section 7.1.15, “AdministrationMessage” Section 7.1.16,

“SignRequestMessage” Section 7.1.17, “FilesDigestRequestMessage” Section 7.1.18,

“SignCertificatesRequestMessage”

eID Applet Protocol Messages

37

7.1.3. AuthenticationDataMessage

This message is only accepted if the eID Applet Service protocol state is: AUTHENTICATE

Table 4. AuthenticationDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthenticationDataMessage

X-AppletProtocol-

SignatureValueSize

true Some Integer value.

X-AppletProtocol-

SaltValueSize

true Some Integer value.

X-AppletProtocol-

SessionIdSize

false Some Integer value.

X-AppletProtocol-

AuthnCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-

SignCertFileSize

false Some Integer value.

X-AppletProtocol-

IdentityFileSize

false Some Integer value.

X-AppletProtocol-

AddressFileSize

false Some Integer value.

X-AppletProtocol-

PhotoFileSize

false Some Integer value.

X-AppletProtocol-

IdentitySignatureFileSize

false Some Integer value.

X-AppletProtocol-

AddressSignatureFileSize

false Some Integer value.

X-AppletProtocol-

NationalRegistryCertFileSize

false Some Integer value.

X-AppletProtocol-

ServerCertFileSize

false Some Integer value.

X-AppletProtocol-

TransactionMessageSignatureSize

false Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

eID Applet Developer's Guide

38

Allowed eID Applet Service response messages are: Section 7.1.19, “FinishedMessage”

Section 7.1.14, “AuthSignRequestMessage”

7.1.4. AuthSignResponseMessage

This message is only accepted if the eID Applet Service protocol state is: AUTH_SIGN

Table 5. AuthSignResponseMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthSignResponseMessage

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Allowed eID Applet Service response messages are: Section 7.1.19, “FinishedMessage”

7.1.5. SignatureDataMessage

This message is only accepted if the eID Applet Service protocol state is: SIGN

Table 6. SignatureDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignatureDataMessage

X-AppletProtocol-

SignatureValueSize

true Some Integer value.

X-AppletProtocol-

SignCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Allowed eID Applet Service response messages are: Section 7.1.19, “FinishedMessage”

7.1.6. FileDigestsDataMessage

This message is only accepted if the eID Applet Service protocol state is: DIGEST

Table 7. FileDigestsDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FileDigestsDataMessage

eID Applet Protocol Messages

39

Header name Required Value

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Allowed eID Applet Service response messages are: Section 7.1.16, “SignRequestMessage”

7.1.7. ContinueInsecureMessage

This message is only accepted if the eID Applet Service protocol state is: INSECURE

Table 8. ContinueInsecureMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true ContinueInsecureMessage

X-AppletProtocol-Version true 1

Allowed eID Applet Service response messages are: Section 7.1.10,

“IdentificationRequestMessage” Section 7.1.13, “AuthenticationRequestMessage”

Section 7.1.15, “AdministrationMessage” Section 7.1.16, “SignRequestMessage” Section 7.1.17,

“FilesDigestRequestMessage”

7.1.8. SignCertificatesDataMessage

This message is only accepted if the eID Applet Service protocol state is: SIGN_CERTS

Table 9. SignCertificatesDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignCertificatesDataMessage

X-AppletProtocol-

SignCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-

IdentityFileSize

false Some Integer value.

X-AppletProtocol-

AddressFileSize

false Some Integer value.

X-AppletProtocol-

PhotoFileSize

false Some Integer value.

X-AppletProtocol-

IdentitySignatureFileSize

false Some Integer value.

eID Applet Developer's Guide

40

Header name Required Value

X-AppletProtocol-

AddressSignatureFileSize

false Some Integer value.

X-AppletProtocol-

NationalRegistryCertFileSize

false Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Allowed eID Applet Service response messages are: Section 7.1.16, “SignRequestMessage”

7.1.9. IdentityDataMessage

This message is only accepted if the eID Applet Service protocol state is: IDENTIFY

Table 10. IdentityDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true IdentityDataMessage

X-AppletProtocol-

IdentityFileSize

true Some Integer value.

X-AppletProtocol-

AddressFileSize

false Some Integer value.

X-AppletProtocol-

PhotoFileSize

false Some Integer value.

X-AppletProtocol-

IdentitySignatureFileSize

false Some Integer value.

X-AppletProtocol-

AddressSignatureFileSize

false Some Integer value.

X-AppletProtocol-

RrnCertFileSize

false Some Integer value.

X-AppletProtocol-

RootCertFileSize

false Some Integer value.

X-AppletProtocol-

AuthnCertFileSize

false Some Integer value.

X-AppletProtocol-

SignCertFileSize

false Some Integer value.

X-AppletProtocol-

CaCertFileSize

false Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

eID Applet Protocol Messages

41

Allowed eID Applet Service response messages are: Section 7.1.19, “FinishedMessage”

7.1.10. IdentificationRequestMessage

Table 11. IdentificationRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true IdentificationRequestMessage

X-AppletProtocol-

IncludeAddress

false Some boolean value.

X-AppletProtocol-IncludePhoto false Some boolean value.

X-AppletProtocol-

IncludeIntegrityData

false Some boolean value.

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-

IncludeCertificates

false Some boolean value.

X-AppletProtocol-

IdentityDataUsage

false Some String value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: IDENTIFY

7.1.11. CheckClientMessage

Table 12. CheckClientMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true CheckClientMessage

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: ENV_CHECK

7.1.12. InsecureClientMessage

Table 13. InsecureClientMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true InsecureClientMessage

X-AppletProtocol-WarnOnly false Some boolean value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: INSECURE

eID Applet Developer's Guide

42

7.1.13. AuthenticationRequestMessage

Table 14. AuthenticationRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthenticationRequestMessage

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-

IncludeHostname

false Some boolean value.

X-AppletProtocol-

IncludeInetAddress

false Some boolean value.

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-PreLogoff false Some boolean value.

X-AppletProtocol-

SessionIdChannelBinding

false Some boolean value.

X-AppletProtocol-

ServerCertificateChannelBinding

false Some boolean value.

X-AppletProtocol-

IncludeIdentity

false Some boolean value.

X-AppletProtocol-

IncludeCertificates

false Some boolean value.

X-AppletProtocol-

IncludeAddress

false Some boolean value.

X-AppletProtocol-IncludePhoto false Some boolean value.

X-AppletProtocol-

IncludeIntegrityData

false Some boolean value.

X-AppletProtocol-

RequireSecureReader

false Some boolean value.

X-AppletProtocol-NoPKCS11 false Some boolean value.

X-AppletProtocol-

TransactionMessage

false Some String value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

This message will perform an eID Applet protocol state transition to: AUTHENTICATE

eID Applet Protocol Messages

43

7.1.14. AuthSignRequestMessage

Table 15. AuthSignRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthSignRequestMessage

X-AppletProtocol-DigestAlgo true Some String value.

X-AppletProtocol-Message true Some String value.

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

This message will perform an eID Applet protocol state transition to: AUTH_SIGN

7.1.15. AdministrationMessage

This message stops a communication session between eID Applet and the eID Applet Service.

Table 16. AdministrationMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AdministrationMessage

X-AppletProtocol-ChangePin false Some boolean value.

X-AppletProtocol-UnblockPin false Some boolean value.

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-

RequireSecureReader

false Some boolean value.

X-AppletProtocol-Version true 1

7.1.16. SignRequestMessage

Table 17. SignRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignRequestMessage

X-AppletProtocol-DigestAlgo true Some String value.

X-AppletProtocol-Description false Some String value.

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-Logoff false Some boolean value.

eID Applet Developer's Guide

44

Header name Required Value

X-AppletProtocol-

RequireSecureReader

false Some boolean value.

X-AppletProtocol-NoPKCS11 false Some boolean value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

This message will perform an eID Applet protocol state transition to: SIGN

7.1.17. FilesDigestRequestMessage

Table 18. FilesDigestRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FilesDigestRequestMessage

X-AppletProtocol-DigestAlgo true Some String value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: DIGEST

7.1.18. SignCertificatesRequestMessage

Table 19. SignCertificatesRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignCertificatesRequestMessage

X-AppletProtocol-

IncludeIdentity

false Some boolean value.

X-AppletProtocol-

IncludeAddress

false Some boolean value.

X-AppletProtocol-IncludePhoto false Some boolean value.

X-AppletProtocol-

IncludeIntegrityData

false Some boolean value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: SIGN_CERTS

7.1.19. FinishedMessage

This message stops a communication session between eID Applet and the eID Applet Service.

eID Applet Developer's Guide License

45

Table 20. FinishedMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FinishedMessage

X-AppletProtocol-ErrorCode false Some ErrorCode value.

X-AppletProtocol-Version true 1

A. eID Applet Developer's Guide License

This document has been released under the Creative Commons license.

You are free to Share — to copy, distribute and transmit the work.

You must attribute the work in the manner specified by the author or licensor (but not in any way

that suggests that they endorse you or your use of the work).

You may not use this work for commercial purposes.

You may not alter, transform, or build upon this work.

eID Applet Developer's Guide

46

More information about the Creative Commons license conditions can be found at Creative

Commons organization [http://creativecommons.org/] .

B. eID Applet License

The eID Applet source code has been released under the GNU LGPL version 3.0.

This is free software; you can redistribute it and/or modify it under the terms

of the GNU Lesser General Public License version 3.0 as published by the Free

Software Foundation.

This software is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along

with this software; if not, see http://www.gnu.org/licenses/.

C. Revision history

Table C.1. Revision history

Date Author Description

26 Jan 2009 Frank Cornelis Initial version.

22 Apr 2009 Frank Cornelis 1.0.0-beta-1

29 May 2009 Frank Cornelis 1.0.0-beta-2

24 Jul 2009 Frank Cornelis 1.0.0-beta-3

18 Sep 2009 Frank Cornelis 1.0.0-beta-4

22 Nov 2009 Frank Cornelis 1.0.0-rc-1

16 Dec 2009 Frank Cornelis 1.0.0-rc-2

6 Jan 2010 Frank Cornelis 1.0.0-rc-3

11 Jan 2010 Frank Cornelis 1.0.0.GA

25 June 2010 Frank Cornelis 1.0.1.RC1

5 Aug 2010 Frank Cornelis 1.0.1.RC2

18 Aug 2010 Frank Cornelis 1.0.1.RC3

15 Sep 2010 Frank Cornelis 1.0.1.GA

25 Feb 2011 Frank Cornelis 1.0.2.GA

20 Jun 2011 Frank Cornelis 1.0.3.GA

9 Dec 2011 Frank Cornelis 1.0.4.GA

2 Oct 2012 Frank Cornelis 1.0.5.GA

http://creativecommons.org/
http://creativecommons.org/
http://creativecommons.org/

Revision history

47

Date Author Description

4 Nov 2013 Frank Cornelis 1.1.0.GA

48

	eID Applet Developer's Guide
	Table of Contents
	1. Introduction
	1.1. Mac OS X
	1.2. Linux
	1.2.1. Fedora 9, 10, 11, 12
	1.2.2. Ubuntu 9.04, 9.10
	1.2.3. Linux: Firefox 3.6 and Chrome
	1.2.4. SELinux

	2. eID Applet
	3. eID Applet Service
	3.1. eID Identification
	3.1.1. eID Address
	3.1.2. eID Photo
	3.1.3. eID Certificates
	3.1.4. Output to PDF
	3.1.5. Output to KML (Google Earth)
	3.1.6. JSON
	3.1.7. Identity Data Integrity
	3.1.8. Privacy Service

	3.2. eID Authentication
	3.2.1. Non-reversible Citizen Identifier
	3.2.2. Secure Channel Binding
	3.2.3. Explicit PIN entry
	3.2.4. Authenticated Identification
	3.2.5. eID Certificates
	3.2.6. eID secure PIN pad card reader

	3.3. eID Signatures
	3.4. eID Administration
	3.5. Generic eID Applet Service settings
	3.5.1. Secure Client Environment
	3.5.2. eID Card Removal
	3.5.3. eID Card Logoff
	3.5.4. Auditing
	3.5.5. Alternative UI
	3.5.6. Requiring a secure smart card reader
	3.5.7. Run-time selection of required eID identity data
	3.5.8. Identity Data Files

	4. Maven Integration
	5. eID Applet Web Application Deployment
	5.1. AJP proxy
	5.2. Reverse proxy
	5.3. Tomcat 7

	6. Accessibility
	6.1. Java Accessibility Bridge
	6.1.1. Mac OS X
	6.1.2. Windows
	6.1.3. Linux

	6.2. Screen Reader Support

	7. eID Applet Protocol
	7.1. eID Applet Protocol Messages
	7.1.1. HelloMessage
	7.1.2. ClientEnvironmentMessage
	7.1.3. AuthenticationDataMessage
	7.1.4. AuthSignResponseMessage
	7.1.5. SignatureDataMessage
	7.1.6. FileDigestsDataMessage
	7.1.7. ContinueInsecureMessage
	7.1.8. SignCertificatesDataMessage
	7.1.9. IdentityDataMessage
	7.1.10. IdentificationRequestMessage
	7.1.11. CheckClientMessage
	7.1.12. InsecureClientMessage
	7.1.13. AuthenticationRequestMessage
	7.1.14. AuthSignRequestMessage
	7.1.15. AdministrationMessage
	7.1.16. SignRequestMessage
	7.1.17. FilesDigestRequestMessage
	7.1.18. SignCertificatesRequestMessage
	7.1.19. FinishedMessage

	A. eID Applet Developer's Guide License
	B. eID Applet License
	C. Revision history

