
1

Fedict eID Applet

Developer's Guide
Integrating the eID Applet within your web applications.

Frank Cornelis

11 Jan 2010

Copyright © 2008-2010 Fedict

Abstract

This developer's guide serves as an entry point for integrating the eID Applet

in your web applications. The target audience is web developers and web

application architects.

1. Introduction ... 1

1.1. Mac OS X .. 2

1.2. Linux .. 2

2. eID Applet ... 3

3. eID Applet Service .. 4

3.1. eID Identification ... 6

3.2. eID Authentication ... 12

3.3. eID Signatures .. 17

3.4. eID Administration ... 18

3.5. eID Applet Kiosk Mode ... 19

3.6. Generic eID Applet Service settings ... 20

4. eID Applet Web Application Deployment ... 23

5. eID Applet Protocol ... 24

5.1. eID Applet Protocol Messages ... 24

A. eID Applet Developer's Guide License .. 33

B. eID Applet License .. 34

C. Revision history .. 34

1. Introduction

The Fedict eID Applet is a browser component that exposes the functionality of an eID card to your

web applications. In Figure 1, “eID Applet Screenshot” you find a screen shot of the eID Applet.

Fedict eID Applet Developer's...

2

Figure 1. eID Applet Screenshot

The main features of the eID Applet are:

• Easy to integrate within an existing web application.

• Security and privacy of the citizen is protected.

• Interactive eID card handling.

• Support of CCID secure pinpad readers.

The eID Applet uses Java applet technology. This minimized the client web browser requirements.

eID Applet Source Code

The eID Applet source code is available at eID Applet Google Code [http://

code.google.com/p/eid-applet/] .

eID Applet Support

Best-effort support on the eID Applet is provided via the eID Applet Google Group

[http://groups.google.com/group/eid-applet] mailing list. Feel free to join in.

1.1. Mac OS X

Because Apple only supports the Java 6 runtime on their Mac OS X operating systems since

Snow Leopard, the identification functionality will not work for Mac OS X 10.4 and 10.5.

The strategy is to no longer support operating systems, but to support a specific Java platform.

For the eID Applet this is the Java 6 platform (for eID identification that is. eID authentication and

eID signature creation can also run using a Java 1.5 JRE). We can only give advice on how to

configure Java 6 on your operating system.

1.2. Linux

1.2.1. Fedora 9, 10, 11, 12

The Fedora operating system comes by default with the IcedTea JRE which is based on the

OpenJDK. If the Firefox browser uses this JRE the eID Applet still has some difficulties to run.

http://code.google.com/p/eid-applet/
http://code.google.com/p/eid-applet/
http://code.google.com/p/eid-applet/
http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet

eID Applet

3

Please download the official Sun Java 6 JRE and enable it in the Firefox browser. The Firefox

plugins can be configured via symbolic links under: /usr/lib/mozilla/plugins . Remove the

IcedTea JRE link via: rm /usr/lib/mozilla/plugins/libjavaplugin.so . Afterwards add

a symbolic link to the Sun JRE plugin, which can be found under: $JAVA_HOME/jre/plugin/

i386/ns7/libjavaplugin_oji.so . Check the installed plugins in Firefox by navigating to:

about:plugins .

1.2.2. Ubuntu 9.04, 9.10

Under Linux Ubuntu you can install the Sun JRE 1.6 via the following command: sudo apt-get

install sun-java6-jdk sun-java6-plugin

2. eID Applet

The eID Applet should be used within a web page as shown in the following example:

<script src="https://www.java.com/js/deployJava.js"></script>

<script>

 var attributes = {

 code :'be.fedict.eid.applet.Applet.class',

 archive :'eid-applet-package.jar',

 width :400,

 height :300

 };

 var parameters = {

 TargetPage :'identity-result.jsp',

 AppletService : 'applet-service',

 BackgroundColor : '#ffffff'

 };

 var version = '1.6';

 deployJava.runApplet(attributes, parameters, version);

</script>

Notice that we are using the Deployment Toolkit to load the eID Applet. This avoids browser

compatibility issues and features an automatic installation of the required Java browser plugin.

The web application in which the eID Applet is embedded should use SSL for securing the

communication between the web browser and the web application server. The eID Applet will not

proceed when it detects a non SSL browser session.

The eID Applet will also not proceed when it detects that it has insufficient privileges to do so.

This implies that the eID Applet JAR has to be signed and trusted by the citizen. The eID Applet

that ships with an officially released eID Applet SDK has been signed by Fedict. In case of a

security breach with the eID Applet, Fedict can revoke the corresponding code signing certificate

to guarantee maximal safety of the citizen.

Fedict eID Applet Developer's...

4

The available eID Applet parameters are summarized in Table 1, “eID Applet Parameters” .

Table 1. eID Applet Parameters

Parameter Required Description

TargetPage required Indicates the page to which the eID Applet navigates

after performing the requested eID operation. For

example: result.jsp

AppletService required Points to the eID Applet Service server-side

component that will handle the communication

between the eID Applet and the (servlet) web

application container. For example: applet-service

BackgroundColor optional The background color that is used by the eID Applet

user interface. The default background color is white.

For example: #ffffff

ForegroundColor optional The foreground color that is used by the eID Applet

user interface. The default foreground color is black.

For example: #000000

Language optional The language that is used by the eID Applet

user interface for internationalization of the status

messages. If it is not provided, the eID Applet defaults

to the JRE runtime locale settings. For example: nl

RemoveCardCallback optional When the eID Applet runs in kiosk mode, a web

developer can use this parameter to set a Javascript

callback. The callback function will be invoked on an

eID card removal event.

MessageCallback optional Via this parameter a web developer can configure

a Javascript callback. This callback function will be

invoked everytime the eID Applet displays an info

message.

Javascript

The eID Applet cannot be accessed from Javascript for cross-site scripting security

reasons.

3. eID Applet Service

The eID Applet requires a server-side service component to communicate the identity or

authentication data from the web browser to the server using a secure channel. We call this

component the eID Applet Service. The eID Applet SDK comes with eID Applet Service servlet

components to ease integration of the eID Applet within servlet container Java EE based web

eID Applet Service

5

applications. The eID Applet Service components require at least a servlet version 2.4 container

and a JRE version 1.5. The eID Applet and eID Applet Service architecture has been depicted in

Figure 2, “eID Applet Architecture” .

Figure 2. eID Applet Architecture

During the first step (1) the web browser loads the web page containing a reference to the eID

Applet. The web browser continues by loading the eID Applet via the JRE web browser plugin.

After the eID Applet has been loaded, it initiates a protocol run (2) with the server-side eID Applet

Service. For some eID operations the web developer is required to configure service provider

components. These service provider components are invoked (3) by the eID Applet Service during

a protocol run. At the end of a protocol run (4) the eID Applet Service pushes some attributes

into the HTTP session context of the web application container. Finally (5) the eID Applet makes

the web browser to navigate to the target page. The target page can now access the eID identity

items (6) made available by the eID Applet service.

eID Applet Service implementations

For the moment we only fully support Java EE servlet containers out of the box.

At the same time this serves as the reference implementation. Depending on

the success of the eID Applet SDK, we will also provide backends for other web

application frameworks. We already have initial support for the ASP.NET web

application environment and for the PHP environment.

eID Applet Service HTTP session

When using web frameworks like JBoss Seam you might stumble on

conversation preservation issues because of the redirect executed by the

Fedict eID Applet Developer's...

6

eID Applet at the end of the performed eID operation. When using a

conversation scoped JBoss Seam managed bean, you can preserve the

conversation across the eID Applet screen flow by adding the following HTTP

parameter to the TargetPage applet parameter: TargetPage :'your-target-

page.seam?conversationId=#{conversation.id}',

3.1. eID Identification

By default the eID Applet Service will operate the eID Applet to make it perform an eID

identification. This is also known as data capture. Via this eID operation your web application is

capable of reading out the identity data (i.e. name, first name, date of birth, ...) of the user his

eID card.

The eID Applet Service Servlet can be configured via your web.xml web deployment descriptor

as shown in the following example:

<servlet>

 <servlet-name>AppletServiceServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.AppletServiceServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>AppletServiceServlet</servlet-name>

 <url-pattern>/applet-service</url-pattern>

</servlet-mapping>

eID Applet Service dependencies

The eID Applet Service, which can be found in the eid-applet-service-

x.x.x.jar artifact, has some 3rd party dependencies. These artifacts are located

under the lib/ directory inside the eID Applet SDK package. Depending on your

Java EE runtime environment you should place these JAR files under the META-

INF/lib directory of your web application.

eID Applet Service availability

One can always check for eID Applet Service availability by manually browsing to

the location of the eID Applet Service servlet as configured in your web.xml Java

EE web deployment descriptor.

After a successful identification took place, the AppletServiceServlet eID Applet Service

will push at least the eid.identity attribute, which holds the parsed identity fields,

eID Identification

7

to the servlet container session. The eid.identity session attribute is of Java type

be.fedict.eid.applet.service.Identity . More information on the exposed attributes can

be found in the Javadoc API documentation of the eID Applet Service artifact.

eID Session Attributes

To ease integration of the eID Applet Service in web frameworks like JBoss

Seam we have provided a top-level eid session attribute and getters on all

exposed session attribute types. The top-level eid session attribute is of Java

type be.fedict.eid.applet.service.EIdData . This means that the identity

is available via both eid.identity session attribute and invocation of the

getIdentity() method on the eid session attribute. This way we cover as much

Java web frameworks as possible.

3.1.1. eID Address

During an eID identification operation the address on the eID card can be retrieved by setting the

following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludeAddress</param-name>

 <param-value>true</param-value>

</init-param>

After a successful eID identification, the eID address will be available via the eid.address session

attribute within the servlet container session context. The eid.address session attribute is of Java

type be.fedict.eid.applet.service.Address .

3.1.2. eID Photo

During an eID identification operation the citizen's photo on the eID card can be retrieved by setting

the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludePhoto</param-name>

 <param-value>true</param-value>

</init-param>

After a successful eID identification, the photo will be available via the eid.photo session attribute

within the servlet container session context. The eID photo is of Java type byte[] and in JPEG

image format.

Fedict eID Applet Developer's...

8

We provide a PhotoServlet to ease visualization of the eID photo within your web application.

Configure the PhotoServlet as follows:

<servlet>

 <servlet-name>PhotoServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.PhotoServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>PhotoServlet</servlet-name>

 <url-pattern>/photo.jpg</url-pattern>

</servlet-mapping>

After a successful eID identification you can display the eID photo by putting next HTML tag in

your web page:

3.1.3. eID Certificates

If you need to have explicit access to the eID citizen certificates, you can instruct the eID Applet

to extract the certificates via the following eID Applet Service servlet configuration:

<init-param>

 <param-name>IncludeCertificates</param-name>

 <param-value>true</param-value>

</init-param>

After a successful eID identification, the certificates will be available as session attributes of Java

type java.security.cert.X509Certificate . The authentication certificate will be available

as eid.certs.authn session attribute. The non-repudiation (i.e. signature) certificate will be

available as eid.certs.sign session attribute. The Citizen CA certificate will be available as

eid.certs.ca session attribute. The Root CA certificate will be available as eid.certs.root

session attribute.

3.1.4. Output to PDF

The eID Applet SDK comes with a servlet component that allows you to output the eID identity

data to PDF. This can be useful if you want to print the eID identity data from within your web

application pages. The PDF servlet can be configured as follows:

eID Identification

9

<servlet>

 <servlet-name>PdfServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.PdfServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>PdfServlet</servlet-name>

 <url-pattern>/identity.pdf</url-pattern>

</servlet-mapping>

After a successful eID identification, the PDF is available via:

View as PDF

3.1.5. Google Earth

The eID Applet Service also comes with a servlet for visualizing the eID identity data via Google

Earth. Figure 3, “eID Identity in Google Earth” shows a screenshot of an eID identity visualized

via Google Earth.

Figure 3. eID Identity in Google Earth

The servlet is configured as follows:

Fedict eID Applet Developer's...

10

<servlet>

 <servlet-name>KmlServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.KmlServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>KmlServlet</servlet-name>

 <url-pattern>/identity.kmz</url-pattern>

</servlet-mapping>

After a successful eID identification, the Google Earth KMZ file is available via:

View in Google Earth

3.1.6. JSON

The eID Applet SDK comes with a servlet to support eID identity data retrieval inside your web

application via JSON. The JSON servlet is configured as follows:

<servlet>

 <servlet-name>JSONServlet</servlet-name>

 <servlet-class>be.fedict.eid.applet.service.JSONServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>JSONServlet</servlet-name>

 <url-pattern>/identity.js</url-pattern>

</servlet-mapping>

The retrieved JSON data object has the following structure:

{

 identity: {

 name: "SPECIMEN",

 firstName: "Alice Geldigekaart",

 dateOfBirth: "Fri Jan 01 00:00:00 CET 1971",

 gender: "FEMALE"

 },

 address: {

 streetAndNumber: "Meirplaats 1 bus 1",

 municipality: "Antwerpen",

 zip: "2000"

eID Identification

11

 }

}

3.1.7. Identity Data Integrity

During an eID identification operation the eID Applet Service can perform integrity verification on

the retrieved eID identity data. This feature prevents malicious parties to alter critical identity data.

To enable this functionality as part of an eID identification operation, you need to implement

the IdentityIntegrityService interface. This service provider interface (SPI) can be found

in the eid-applet-service-spi artifact. The corresponding service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component

needs to be communicated to the eID Applet Service via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>IdentityIntegrityService</param-name>

 <param-value>your/location/in/jndi/IdentityIntegrityServiceBean</param-value>

</init-param>

Java EE Application Classpath

In an EJB Java EE application the eid-applet-service-spi artifact should be

moved from your web application WEB-INF/lib WAR artifact to the EAR scoped

classpath. Depending on your used Java EE application server is should be

registered in application.xml as a Java module or moved to the lib/ directory

of your EAR to avoid classpath issues in your application server.

Java EE 6 Web Profile support

To support the coming Java EE 6 Web Profile we already foresee the usage

of two types of service component lookups. The first one is JNDI based. This

type of service lookup allows you to utilize EJB3 session beans as service

provider interface implementation. The second type is via simple Java class name

references. This type of service lookup is meant for lightweight servlet container

environment. For example the SignatureService interface implementing

component can be referred to via both SignatureService init-param and via

SignatureServiceClass init-param . The SignatureService init-param will

trigger a JNDI lookup of the signature service. The SignatureServiceClass

Fedict eID Applet Developer's...

12

init-param will trigger a class instantiation using the default constructor of the

given class.

The identity integrity service prevents malicious parties from altering the identity data. However,

this does not prevent malicous parties to replace the identity data with that of another citizen. To

prevent replacement of identity data, one can use a so called authenticated eID identification.

If the eID identification is preceded with an eID authentication then the eID Applet Service is able

to link the authenticated national registry number with the one found in the eID identity file during

identity integrity verification. This makes for a bullet-proof eID identification that cannot be forged.

For some applications that need eID identification of citizen B after eID authentication of citizen

A, you might want to disable this feature. Do so via:

<init-param>

 <param-name>SkipNationalNumberCheck</param-name>

 <param-value>true</param-value>

</init-param>

3.1.8. Privacy Service

The application can define an identity data usage description by means of a privacy service

component. To enable this functionality as part of an eID identification operation, you need to

implement the PrivacyService interface. This service provider interface (SPI) can be found in

the eid-applet-service-spi artifact. The corresponding service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component

needs to be communicated to the eID Applet Service via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>PrivacyService</param-name>

 <param-value>your/location/in/jndi/PrivacyServiceBean</param-value>

</init-param>

3.2. eID Authentication

The eID Applet can be used to authenticate an end user via the eID card. eID based entity

authentication is much safer than a simple password based authentication scheme since the eID

card makes a two-factor authentication possible.

eID Authentication

13

eID Applet Authentication Configuration

There are many different eID Applet configurations possible for eID Authentication.

The optimal configuration highly depends on your web application requirements.

In case of doubt contact us at the eID Applet Google Group [http://

groups.google.com/group/eid-applet] mailing list for additional advice.

To perform an eID authentication, you need to implement the AuthenticationService

interface. This interface can be found as part of the eid-applet-service-spi artifact. This

service component (EJB3) session bean should be registered somewhere in JNDI. The JNDI

location of this service component needs to be set via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>AuthenticationService</param-name>

 <param-value>your/location/in/jndi/AuthenticationServiceBean</param-value>

</init-param>

After a successful authentication the eid.identifier session attribute will contain a unique

identifier (the national registration number) for the user. The eid.identifier session attribute is

of Java type java.lang.String . To respect the citizen's privacy, the national registration number

should not be abuse for linking identity data. Profiling based on eID data linking is forbidden by law.

Mac OS X

Because not every version of Mac OS X supports the Java 6 runtime, we made

the eID Applet to also operate on a Java 5 runtime for the basic eID authentication

(and eID signature) operations.

Sun JRE

Because the eID Applet is using the SunPKCS11 security provider we need the Sun

JRE as browser applet runtime for eID authentication (and eID signature) via the

eID Applet. These days the OpenJDK JRE also comes with an (almost working)

SunPKCS11 security provider.

http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet
http://groups.google.com/group/eid-applet

Fedict eID Applet Developer's...

14

eID Middleware

The eID Applet is using the PKCS#11 library for eID authentication (and eID

signatures). This requires that the eID Middleware has been installed on the client

system.

If no PKCS#11 library has been found and the applet browser runtime is Java 6,

then the eID Applet will fallback to the Java 6 Smart Card I/O API to generate the

authentication (or in case of eID signature the non-repudiation) digital signature

via the direct PC/SC smart card interface.

By default the eID Applet will sign a sequence similar to (salt, challenge) using the

authentication private key of the citizen's eID card. The challenge is send over SSL by the eID

Applet Service. The salt value is produced by the eID Applet itself. The salt value prevents

that the eID Applet is forced into signing a given server-side value. To prevent a certain type

of man-in-the-middle attack we can make the eID Applet to sign a sequence similar to (salt,

hostname, challenge) . This feature can be enabled by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>Hostname</param-name>

 <param-value>www.PutYourSiteHostnameHere.be</param-value>

</init-param>

Hostname verification

It is strongly advised to enable this hostname verification feature to reduce security

vulnerability.

To prevent DNS attacks one can even make the eID Applet sign the IP address of the server. This

feature can be enabled by setting the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>InetAddress</param-name>

 <param-value>1.2.3.4</param-value>

</init-param>

If you enable both Hostname and InetAddress features at the same time, the eID Applet will be

signing a sequence similar to (salt, hostname, IP address, challenge) . The hostname

and IP address are the same as seen by the web browser.

eID Authentication

15

3.2.1. Non-reversible Citizen Identifier

After a successful eID authentication took place, the eid.identifier session attribute will contain

the national registry number. In some cases the national registry number cannot be used as

is for unique user identifier. The eID Applet Service features Non-Reversible Citizen Identifiers

(NRCID) to transform the national registry number into an application domain specific identifier.

The NRCID is based on the HMAC-SHA1 of the National Registry Number, optionally appended

with an application identifier and/or organization identifier. This feature can be enabled by setting

the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>NRCIDSecret</param-name>

 <param-value>place-your-application-secret-here</param-value>

</init-param>

The secret should be hexadecimal encoded and at least 128 bits (16 bytes) long. Thus the

hexadecimal encoded secret should be at least 32 characters long.

The optional application identifier and organization identifier can be specified via the NRCIDAppId

and NRCIDOrgId init parameters.

3.2.2. Secure Channel Binding

Tunneled entity authentication protocols like the one implemented by the eID Applet are subject

to man-in-the-middle attacks without proper secure channel binding put in place. Cryptographic

end-point channel binding has been implemented by means of digesting the TLS server certificate

as part of the authentication signature. This option can be activated via the following init-param

on the AppletServiceServlet :

<init-param>

 <param-name>ChannelBindingServerCertificate</param-name>

 <param-value>/path/to/your/server/certificate.der</param-value>

</init-param>

The server certificate should be in DER encoded format or in PEM format.

Server Certificate Channel Binding

It is strongly advised to activate server certificate cryptographic channel binding to

have equivalent security properties compared to mutual TLS entity authentication.

Fedict eID Applet Developer's...

16

Besides server certificate channel binding the eID Applet also supports unique channel binding

using the TLS session identifier. This option can be activated via the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>SessionIdChannelBinding</param-name>

 <param-value>true</param-value>

</init-param>

This will make the authentication signature to also digest the TLS session identifier.

Channel Binding

Secure channel binding based on unique channel binding using the TLS session

identifier alone is not enough! Always use at least server certificate cryptographic

channel binding. You can combine this with (unsecure) unique channel binding

using the TLS session identifier if appropriate.

3.2.3. Explicit PIN entry

The eID card offers caching of the PIN authorization when creating an authentication signature.

Some applications might require a PIN entry upon each authentication request. This can be

achieved by performing an eID card logoff right before the creation of the authentication signature.

Activate this feature via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>PreLogoff</param-name>

 <param-value>true</param-value>

</init-param>

3.2.4. Authenticated Identification

It is possible to combine an eID authentication operation with an eID identification operation.

Activate the eID identification as part of the eID authentication via the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>IncludeIdentity</param-name>

 <param-value>true</param-value>

</init-param>

eID Signatures

17

Also include the eID address via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludeAddress</param-name>

 <param-value>true</param-value>

</init-param>

Also include the eID photo via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>IncludePhoto</param-name>

 <param-value>true</param-value>

</init-param>

The identity integrity service can also be activated when combining eID authentication with eID

identification.

3.3. eID Signatures

The eID Applet can also be used to create digital signatures using the non-repudiation

eID certificate. The supported signature algorithms are SHA1-RSA-PKCS1 , SHA224-RSA-PKCS1

, SHA256-RSA-PKCS1 , SHA384-RSA-PKCS1 , SHA512-RSA-PKCS1 , RIPEMD128-RSA-PKCS1 ,

RIPEMD160-RSA-PKCS1 , and RIPEMD256-RSA-PKCS1 .

Legally Binding eID Digital Signatures

Please be aware that the eID digital signatures are legally binding by law. Don't

make the citizen sign digital documents unless it is absolutely necessary from a

legal point of view for the correct functioning of your business work flow.

To use this functionality you need to implement the SignatureService interface. This interface

can be found in the eid-applet-service-spi artifact. This service component (EJB3) session

bean should be registered somewhere in JNDI. The JNDI location of this service component needs

to be set via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>SignatureService</param-name>

 <param-value>your/location/in/jndi/SignatureServiceBean</param-value>

</init-param>

Fedict eID Applet Developer's...

18

The eID Applet Service can be configured to perform two basic types of digital signatures:

• The digest value to be signed originates solely from the SignatureService implementing

service component.

• The eID Applet first sends over a set of digest values calculated from local files. These files

are selected by the citizen via an eID Applet file user interface. Out of this set of digest values

the SignatureService implementing service component then calculates a super digest value.

This digest value is signed using the eID Applet.

The supported file digest algorithms are SHA-1 , SHA-256 , SHA-384 , and SHA-512 .

This type of digital signature operation can be used to construct for example XML Signatures,

XAdES Signatures or PDF Signatures.

The type of digital signature created by the eID Applet is completely determined by the

implementation of the SignatureService SPI. We provide several base implementation of the

SignatureService SPI as part of the eid-applet-service-signer artifact. The most important

signature service implementations provided by the eID Applet SDK are:

• ODF 1.2 signatures (supported by OpenOffice.org 3.1)

• Office OpenXML (supported by Microsoft Office 2007)

PKI Validation

The eID Applet Service does not perform any PKI validation. So the signature

service component, authentication service component and the identity integrity

component need to implement PKI validation of the citizen certificates itself. PKI

validation is out of scope of the provided eID Applet Service.

A PKI validation module tailored for the Belgian eID PKI is available at the jTrust

Google Code [http://code.google.com/p/jtrust/] site.

3.4. eID Administration

The eID Applet allows for some administrative eID tasks like changing the PIN and unblocking the

PIN. This feature has been implemented to break the hard dependency on the eID Middleware.

The eID PIN change administrative task can be executed by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>ChangePin</param-name>

 <param-value>true</param-value>

http://code.google.com/p/jtrust/
http://code.google.com/p/jtrust/
http://code.google.com/p/jtrust/

eID Applet Kiosk Mode

19

</init-param>

The eID unblock PIN administrative task can be executed by setting the following init-param on

the AppletServiceServlet :

<init-param>

 <param-name>UnblockPin</param-name>

 <param-value>true</param-value>

</init-param>

3.5. eID Applet Kiosk Mode

Some web applications require explicit management of the (authenticated) user session. For this

type of web applications we have foreseen a so-called Kiosk Mode. In this mode the eID Applet will

notify the web application in case the eID card has been removed from the smart card reader. The

web developer can use this notification to trigger for example a session cleanup at the server-side.

The eID Applet Kiosk Mode can be activated by setting the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>Kiosk</param-name>

 <param-value>true</param-value>

</init-param>

The web developer can install the notification callback as follows inside a web page:

<script src="https://www.java.com/js/deployJava.js"></script>

<script>

 var attributes = {

 code :'be.fedict.eid.applet.Applet.class',

 archive :'eid-applet-package.jar',

 width :1,

 height :1,

 mayscript :'true'

 };

 var parameters = {

 AppletService :'applet-kiosk-service',

 RemoveCardCallback :'removeCardCallback'

 };

 var version = '1.5';

Fedict eID Applet Developer's...

20

 deployJava.runApplet(attributes, parameters, version);

</script>

<script>

 function removeCardCallback() {

 alert('eID card removal has been detected by the web page.');

 }

</script>

As you can see the web developer can install a Javascript callback function by setting the

RemoveCardCallback eID Applet parameter. In our example we simply display a Javascript pop-

up. Of course more complex operations are possible here. One might imagine a use case where

the callback method invokes a server-side component via AJAX.

mayscript

Don't forget the mayscript:'true' attribute, else the eID Applet will not be able

to invoke Javascripts inside the browser window.

3.6. Generic eID Applet Service settings

The settings listed in this section apply to eID identification operations, eID authentication

operations, eID signature operations, and eID administration operations.

3.6.1. Secure Client Environment

The eID Applet offers functionality to check whether the client environment is secure enough

given the application requirements. In case the eID Applet Service detects an insecure client

environment the eID Applet can:

• show an error message and abort the requested eID operation.

• show a warning message and ask the citizen whether he/she wants to continue or not.

To activate this functionality you need to implement the SecureClientEnviromentService

interface. This interface can be found in the eid-applet-service-spi artifact. This service

component (EJB3) session bean should be registered somewhere in JNDI. The JNDI

location of this service component needs to be set via the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>SecureClientEnvironmentService</param-name>

 <param-value>your/location/in/jndi/SecureClientEnvironmentServiceBean</param-value>

</init-param>

Generic eID Applet Service settings

21

Additional client environment information can be pushed to the eID Applet Service by adding the

following eID Applet parameters within your web page eID Applet configuration:

NavigatorUserAgent : navigator.userAgent,

NavigatorAppName : navigator.appName,

NavigatorAppVersion : navigator.appVersion

Java 6

This eID Applet feature requires a Java 6 browser runtime or an installed eID

Middleware PKCS#11 library.

3.6.2. eID Card Removal

The eID Applet can ask the citizen for eID card removal after performing the selected eID

operation. This option can be used to limit the window of opportunity for malware to abuse the

eID card.

The eID card removal can be activated by setting the following init-param on the

AppletServiceServlet :

<init-param>

 <param-name>RemoveCard</param-name>

 <param-value>true</param-value>

</init-param>

3.6.3. eID Card Logoff

After an eID authentication, eID signature, or eID administration task (i.e. PIN change) the eID

card will re-use the PIN authorization for future eID authentication operations. This feature was

originally implemented on the eID JavaCard Applet (which is located inside the eID chip) to allow

for mutual authenticated SSL without the need to re-enter the PIN on each SSL session renewal.

Although this makes sense in the context of SSL, it actually makes for a serious eID security

weakness: SSO should be handled at the IdP level, not at the card level. Only an IdP can have

notion of trust domains between different web applications. Luckily the eID card foresees in an eID

card logoff. This eID logoff feature can be enabled during both eID authentication or eID signature

operations by setting the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>Logoff</param-name>

 <param-value>true</param-value>

Fedict eID Applet Developer's...

22

</init-param>

This feature requires a Java 6 browser runtime as it is using the Smart Card I/O API. If no Java 6

runtime is available this feature will default to an eID card removal as this yields the same result.

Enable eID card logoff

It is strongly advised to enable the eID card logoff feature to prevent abuse of the

authentication functionality of the eID card.

3.6.4. Auditing

To comply with certain regulations one might need to have an audit trace of the activities performed

on the eID Applet Service by clients. The eID Applet Service offers auditing support by means

of the SPI design pattern.

To activate the audit functionality you need to implement the AuditService interface. This

interface can be found in the eid-applet-service-spi artifact. This service component (EJB3)

session bean should be registered somewhere in JNDI. The JNDI location of this service

component needs to be set via the following init-param on the AppletServiceServlet :

<init-param>

 <param-name>AuditService</param-name>

 <param-value>your/location/in/jndi/AuditServiceBean</param-value>

</init-param>

3.6.5. Alternative UI

The eID Applet offers its own user interface for interactive handling of eID card events. As some

web application technologies (like Flex) like to construct their own user interface we created

a Javascript based callback mechanism so that these web technologies can visualize the info

messages themselves.

The web developer can install the info message callback inside a web page as follows:

<script src="https://www.java.com/js/deployJava.js"></script>

<script>

 var attributes = {

 code :'be.fedict.eid.applet.Applet.class',

 archive :'eid-applet-package.jar',

 width :1,

 height :1,

eID Applet Web Application Deployment

23

 mayscript :'true'

 };

 var parameters = {

 AppletService :'applet-service',

 MessageCallback :'messageCallback'

 };

 var version = '1.6';

 deployJava.runApplet(attributes, parameters, version);

</script>

<script>

 function messageCallback(status, message) {

 document.getElementById('appletMessage').innerHTML = '' + status + ': ' + message

 + '';

 }

</script>

<div id="appletMessage">Message placeholder</div>

As you can see the web developer can install a Javascript callback function by setting the

MessageCallback eID Applet parameter. The status parameter can be either NORMAL or ERROR

. In our example we simply display the incoming message via some dynamic HTML. Of course

more complex visualizations are possible here.

mayscript

Don't forget the mayscript:'true' attribute, else the eID Applet will not be able

to invoke Javascripts inside the browser window.

4. eID Applet Web Application Deployment

You can deploy your eID Applet enabled web application over a lot of different network topologies,

depending on the setup of your infrastructure. The easiest configuration is a setup where you

terminate the SSL on the Application Server itself. Another option is to use an AJP proxy. An

example of how to configure the Apache HTTPD AJP proxy is given below:

LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

ProxyPass /eid-applet-test/ ajp://localhost:8009/eid-applet-test/

ProxyPass /eid-applet-beta/ ajp://localhost:8009/eid-applet-beta/

This AJP proxy can then terminate the SSL without the Application Service noticing this.

Some configuration use non-AJP aware reverse proxies. An example on how to configure the

Apache HTTPD as a reverse proxy is given below:

Fedict eID Applet Developer's...

24

ProxyRequests Off

<Proxy *>

 Order deny,allow

 Allow from all

</Proxy>

<Location /eid-applet-test/>

 ProxyPass http://localhost:8080/eid-applet-test/

 ProxyPassReverse http://localhost:8080/eid-applet-test/

</Location>

Because the Application Server no longer receives the SSL information as provided by the AJP

protocol, the eID Applet Service can no longer detect whether it's using a secure connection or

not. The eID Applet Service can be configured to skip the secure connection check using the

following init-param on the AppletServiceServlet :

<init-param>

 <param-name>SkipSecureConnectionCheck</param-name>

 <param-value>true</param-value>

</init-param>

Further it is important to have a servlet container session cookie without the HttpOnly flag set.

Else the eID Applet Service will push the eID identity credentials in the wrong Application Server

HTTP session.

5. eID Applet Protocol

In this section we will elaborate on the eID Applet protocol used in the communication between the

eID Applet and the eID Applet Service. If you use the eID Applet Service servlet implementation

that comes with the eID Applet SDK you actually don't need to know the details of the eID Applet

protocol. However, this information can be useful for web application developers that use other

web frameworks than a Java EE servlet container based framework.

The eID Applet Protocol is based on the HTTP protocol using the POST method. Parameters are

passed as HTTP headers and for binary data the HTTP body is used. The messages should be

transported over a secure SSL connection.

5.1. eID Applet Protocol Messages

The following documentation has been generated automatically.

eID Applet Protocol Messages

25

5.1.1. HelloMessage

This message starts a communication session between eID Applet and eID Applet Service. It sets

the protocol state to: INIT

Table 2. HelloMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true HelloMessage

X-AppletProtocol-Language false Some String value.

X-AppletProtocol-Version true 1

Allowed eID Applet Service response messages are: Section 5.1.9,

“IdentificationRequestMessage” Section 5.1.10, “CheckClientMessage” Section 5.1.12,

“AuthenticationRequestMessage” Section 5.1.13, “AdministrationMessage” Section 5.1.14,

“SignRequestMessage” Section 5.1.15, “FilesDigestRequestMessage” Section 5.1.16,

“KioskMessage” Section 5.1.17, “SignCertificatesRequestMessage”

5.1.2. ClientEnvironmentMessage

This message is only accepted if the eID Applet Service protocol state is: ENV_CHECK

Table 3. ClientEnvironmentMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true ClientEnvironmentMessage

X-AppletProtocol-JavaVersion true Some String value.

X-AppletProtocol-JavaVendor true Some String value.

X-AppletProtocol-OSName true Some String value.

X-AppletProtocol-OSArch true Some String value.

X-AppletProtocol-OSVersion true Some String value.

X-AppletProtocol-

NavigatorUserAgent

false Some String value.

X-AppletProtocol-

NavigatorAppName

false Some String value.

X-AppletProtocol-

NavigatorAppVersion

false Some String value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: A list of strings containing the names of the smart card readers.

Fedict eID Applet Developer's...

26

Allowed eID Applet Service response messages are: Section 5.1.9,

“IdentificationRequestMessage” Section 5.1.11, “InsecureClientMessage” Section 5.1.12,

“AuthenticationRequestMessage” Section 5.1.13, “AdministrationMessage” Section 5.1.14,

“SignRequestMessage” Section 5.1.15, “FilesDigestRequestMessage” Section 5.1.17,

“SignCertificatesRequestMessage”

5.1.3. AuthenticationDataMessage

This message is only accepted if the eID Applet Service protocol state is: AUTHENTICATE

Table 4. AuthenticationDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthenticationDataMessage

X-AppletProtocol-

SignatureValueSize

true Some Integer value.

X-AppletProtocol-

SaltValueSize

true Some Integer value.

X-AppletProtocol-

SessionIdSize

false Some Integer value.

X-AppletProtocol-

AuthnCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-

IdentityFileSize

false Some Integer value.

X-AppletProtocol-

AddressFileSize

false Some Integer value.

X-AppletProtocol-

PhotoFileSize

false Some Integer value.

X-AppletProtocol-

IdentitySignatureFileSize

false Some Integer value.

X-AppletProtocol-

AddressSignatureFileSize

false Some Integer value.

X-AppletProtocol-

NationalRegistryCertFileSize

false Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

eID Applet Protocol Messages

27

Body content: Contains concatenation of salt value, optional session id, signature value, and authn

cert chain.

Allowed eID Applet Service response messages are: Section 5.1.18, “FinishedMessage”

5.1.4. SignatureDataMessage

This message is only accepted if the eID Applet Service protocol state is: SIGN

Table 5. SignatureDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignatureDataMessage

X-AppletProtocol-

SignatureValueSize

true Some Integer value.

X-AppletProtocol-

SignCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: Contains concatenation of signature value and sign cert chain.

Allowed eID Applet Service response messages are: Section 5.1.18, “FinishedMessage”

5.1.5. FileDigestsDataMessage

This message is only accepted if the eID Applet Service protocol state is: DIGEST

Table 6. FileDigestsDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FileDigestsDataMessage

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: List of string triples containing (digest algo, digest value in hex, description)

Allowed eID Applet Service response messages are: Section 5.1.14, “SignRequestMessage”

5.1.6. ContinueInsecureMessage

This message is only accepted if the eID Applet Service protocol state is: INSECURE

Fedict eID Applet Developer's...

28

Table 7. ContinueInsecureMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true ContinueInsecureMessage

X-AppletProtocol-Version true 1

Allowed eID Applet Service response messages are: Section 5.1.9,

“IdentificationRequestMessage” Section 5.1.12, “AuthenticationRequestMessage”

Section 5.1.13, “AdministrationMessage” Section 5.1.14, “SignRequestMessage” Section 5.1.15,

“FilesDigestRequestMessage”

5.1.7. SignCertificatesDataMessage

This message is only accepted if the eID Applet Service protocol state is: SIGN_CERTS

Table 8. SignCertificatesDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignCertificatesDataMessage

X-AppletProtocol-

SignCertFileSize

true Some Integer value.

X-AppletProtocol-

CaCertFileSize

true Some Integer value.

X-AppletProtocol-

RootCaCertFileSize

true Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: The non-repudiation certificate chain.

Allowed eID Applet Service response messages are: Section 5.1.14, “SignRequestMessage”

5.1.8. IdentityDataMessage

This message is only accepted if the eID Applet Service protocol state is: IDENTIFY

Table 9. IdentityDataMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true IdentityDataMessage

X-AppletProtocol-

IdentityFileSize

true Some Integer value.

X-AppletProtocol-

AddressFileSize

false Some Integer value.

eID Applet Protocol Messages

29

Header name Required Value

X-AppletProtocol-

PhotoFileSize

false Some Integer value.

X-AppletProtocol-

IdentitySignatureFileSize

false Some Integer value.

X-AppletProtocol-

AddressSignatureFileSize

false Some Integer value.

X-AppletProtocol-

RrnCertFileSize

false Some Integer value.

X-AppletProtocol-

RootCertFileSize

false Some Integer value.

X-AppletProtocol-

AuthnCertFileSize

false Some Integer value.

X-AppletProtocol-

SignCertFileSize

false Some Integer value.

X-AppletProtocol-

CaCertFileSize

false Some Integer value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: Concatenation of identity file, optional address file, optional photo file, optional

identity signature file, optional address signature file, and optional national registry certificate and

root certificate.

Allowed eID Applet Service response messages are: Section 5.1.18, “FinishedMessage”

5.1.9. IdentificationRequestMessage

Table 10. IdentificationRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true IdentificationRequestMessage

X-AppletProtocol-

IncludeAddress

false Some boolean value.

X-AppletProtocol-IncludePhoto false Some boolean value.

X-AppletProtocol-

IncludeIntegrityData

false Some boolean value.

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-

IncludeCertificates

false Some boolean value.

Fedict eID Applet Developer's...

30

Header name Required Value

X-AppletProtocol-

IdentityDataUsage

false Some String value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: IDENTIFY

5.1.10. CheckClientMessage

Table 11. CheckClientMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true CheckClientMessage

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: ENV_CHECK

5.1.11. InsecureClientMessage

Table 12. InsecureClientMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true InsecureClientMessage

X-AppletProtocol-WarnOnly false Some boolean value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: INSECURE

5.1.12. AuthenticationRequestMessage

Table 13. AuthenticationRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AuthenticationRequestMessage

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-

IncludeHostname

false Some boolean value.

X-AppletProtocol-

IncludeInetAddress

false Some boolean value.

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-PreLogoff false Some boolean value.

X-AppletProtocol-

SessionIdChannelBinding

false Some boolean value.

eID Applet Protocol Messages

31

Header name Required Value

X-AppletProtocol-

ServerCertificateChannelBinding

false Some boolean value.

X-AppletProtocol-

IncludeIdentity

false Some boolean value.

X-AppletProtocol-

IncludeAddress

false Some boolean value.

X-AppletProtocol-IncludePhoto false Some boolean value.

X-AppletProtocol-

IncludeIntegrityData

false Some boolean value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: The challenge to be signed using the authentication certificate. If IncludeHostname

is set, then prefix the challenge with the server hostname before signing.

This message will perform an eID Applet protocol state transition to: AUTHENTICATE

5.1.13. AdministrationMessage

This message stops a communication session between eID Applet and the eID Applet Service.

Table 14. AdministrationMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true AdministrationMessage

X-AppletProtocol-ChangePin false Some boolean value.

X-AppletProtocol-UnblockPin false Some boolean value.

X-AppletProtocol-RemoveCard false Some boolean value.

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-Version true 1

5.1.14. SignRequestMessage

Table 15. SignRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignRequestMessage

X-AppletProtocol-DigestAlgo true Some String value.

X-AppletProtocol-Description false Some String value.

X-AppletProtocol-RemoveCard false Some boolean value.

Fedict eID Applet Developer's...

32

Header name Required Value

X-AppletProtocol-Logoff false Some boolean value.

X-AppletProtocol-Version true 1

HTTP body should contain the data.

Body content: The digest value to be signed using the non-repudiation certificate

This message will perform an eID Applet protocol state transition to: SIGN

5.1.15. FilesDigestRequestMessage

Table 16. FilesDigestRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FilesDigestRequestMessage

X-AppletProtocol-DigestAlgo true Some String value.

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: DIGEST

5.1.16. KioskMessage

This message stops a communication session between eID Applet and the eID Applet Service.

Table 17. KioskMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true KioskMessage

X-AppletProtocol-Version true 1

5.1.17. SignCertificatesRequestMessage

Table 18. SignCertificatesRequestMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true SignCertificatesRequestMessage

X-AppletProtocol-Version true 1

This message will perform an eID Applet protocol state transition to: SIGN_CERTS

5.1.18. FinishedMessage

This message stops a communication session between eID Applet and the eID Applet Service.

eID Applet Developer's Guide License

33

Table 19. FinishedMessage HTTP headers

Header name Required Value

X-AppletProtocol-Type true FinishedMessage

X-AppletProtocol-Version true 1

A. eID Applet Developer's Guide License

This document has been released under the Creative Commons license.

You are free to Share — to copy, distribute and transmit the work.

You must attribute the work in the manner specified by the author or licensor (but not in any way

that suggests that they endorse you or your use of the work).

You may not use this work for commercial purposes.

You may not alter, transform, or build upon this work.

More information about the Creative Commons license conditions can be found at Creative

Commons organization [http://creativecommons.org/] .

http://creativecommons.org/
http://creativecommons.org/
http://creativecommons.org/

Fedict eID Applet Developer's...

34

B. eID Applet License

The eID Applet source code has been released under the GNU LGPL version 3.0.

This is free software; you can redistribute it and/or modify it under the terms of

the GNU Lesser General Public License version 3.0 as published by the Free Software

Foundation. This software is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for

more details. You should have received a copy of the GNU Lesser General Public

License along with this software; if not, see http://www.gnu.org/licenses/.

C. Revision history

Table C.1. Revision history

Date Author Description

26 Jan 2009 Frank Cornelis Initial version.

22 Apr 2009 Frank Cornelis 1.0.0-beta-1

29 May 2009 Frank Cornelis 1.0.0-beta-2

24 Jul 2009 Frank Cornelis 1.0.0-beta-3

18 Sep 2009 Frank Cornelis 1.0.0-beta-4

22 Nov 2009 Frank Cornelis 1.0.0-rc-1

16 Dec 2009 Frank Cornelis 1.0.0-rc-2

6 Jan 2010 Frank Cornelis 1.0.0-rc-3

11 Jan 2010 Frank Cornelis 1.0.0.GA

	Fedict eID Applet Developer's Guide
	Table of Contents
	1. Introduction
	1.1. Mac OS X
	1.2. Linux
	1.2.1. Fedora 9, 10, 11, 12
	1.2.2. Ubuntu 9.04, 9.10

	2. eID Applet
	3. eID Applet Service
	3.1. eID Identification
	3.1.1. eID Address
	3.1.2. eID Photo
	3.1.3. eID Certificates
	3.1.4. Output to PDF
	3.1.5. Google Earth
	3.1.6. JSON
	3.1.7. Identity Data Integrity
	3.1.8. Privacy Service

	3.2. eID Authentication
	3.2.1. Non-reversible Citizen Identifier
	3.2.2. Secure Channel Binding
	3.2.3. Explicit PIN entry
	3.2.4. Authenticated Identification

	3.3. eID Signatures
	3.4. eID Administration
	3.5. eID Applet Kiosk Mode
	3.6. Generic eID Applet Service settings
	3.6.1. Secure Client Environment
	3.6.2. eID Card Removal
	3.6.3. eID Card Logoff
	3.6.4. Auditing
	3.6.5. Alternative UI

	4. eID Applet Web Application Deployment
	5. eID Applet Protocol
	5.1. eID Applet Protocol Messages
	5.1.1. HelloMessage
	5.1.2. ClientEnvironmentMessage
	5.1.3. AuthenticationDataMessage
	5.1.4. SignatureDataMessage
	5.1.5. FileDigestsDataMessage
	5.1.6. ContinueInsecureMessage
	5.1.7. SignCertificatesDataMessage
	5.1.8. IdentityDataMessage
	5.1.9. IdentificationRequestMessage
	5.1.10. CheckClientMessage
	5.1.11. InsecureClientMessage
	5.1.12. AuthenticationRequestMessage
	5.1.13. AdministrationMessage
	5.1.14. SignRequestMessage
	5.1.15. FilesDigestRequestMessage
	5.1.16. KioskMessage
	5.1.17. SignCertificatesRequestMessage
	5.1.18. FinishedMessage

	A. eID Applet Developer's Guide License
	B. eID Applet License
	C. Revision history

